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 19 
ABSTRACT 20 

 21 
Risk pervades nearly all the choices we make in daily life. Until recently, the neural 22 

mechanisms underlying risk-sensitive decision making were largely unknown. Here 23 

we review recent results bearing on this topic. Our review indicates that risk 24 

aversion is not as common as is generally believed. Moreover, risk preferences are 25 

not stable, but depend strongly on the circumstances in which they are assessed. 26 

The brain areas that mediate risky decision making are likewise diverse and 27 

heterogeneous and contribute to a variety of component processes. These findings 28 

validate a broad neuroeconomic approach emphasizing the importance of multiple 29 

convergent investigations into the brain mechanisms underlying decision making.  30 

 31 

 32 

33 
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 33 

INTRODUCTION 34 

 35 

Uncertainty is ubiquitous, and adaptive behavior requires dealing with it in a biologically 36 

meaningful fashion. Our goal in this chapter is to describe current evidence concerning the 37 

mechanisms that allow decision makers to deal with the uncertainty that characterizes our world. 38 

A fundamental premise is that these mechanisms are embodied in neuronal and chemical events 39 

in the brain. We therefore advocate a neuroeconomic approach to understanding the mechanisms 40 

of risk sensitive decision making (Glimcher, 2002; Sanfey, Loewenstein, McClure, & Cohen, 41 

2006). This emphasis distinguishes our goals from those of behavioral psychologists, 42 

economists, and evolutionary biologists. Nonetheless, each of these other approaches offers 43 

valuable insights, so we will consider evidence from these related fields (Glimcher, 2003).  44 

A neuroeconomic approach has several appealing features. First, the brain is the 45 

biological basis of cognition and behavior; thus, any model of decision making must ultimately 46 

be valid at the neural level. Second, a more detailed understanding of the neural mechanisms 47 

underlying decision making will allow us to refine and elaborate upon current models of 48 

behavior and cognition. Finally, the neuroeconomic approach brings us closer to developing 49 

treatments for mental disorders characterized by risky behavior and impulsivity, including 50 

compulsive gambling, addiction, obsessive-compulsive disorder, and attention deficit 51 

hyperactivity disorder. Accurate neural models will be crucial for resolving these pressing 52 

medical concerns. 53 

The specific goal of this chapter is to review current evidence regarding the brain 54 

mechanisms supporting decision making under economic risk. To do this, we will discuss other 55 
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topics related to economic decision making more broadly, focusing on impulsivity and inter-56 

temporal choice. Because risk sensitive decision making and inter-temporal choice share several 57 

intuitive properties, there has been much speculation about how the two processes are related 58 

(Green & Myerson, 2004; Rachlin, 2000). Although it remains unclear whether these types of 59 

decisions share common neuronal mechanisms, we believe that the neuroeconomic approach 60 

provides a solid foundation on which a synthesis may be built.  61 

 62 

Risk sensitivity 63 

 64 

If decision makers are simply trying to maximize reward, they should be indifferent to 65 

risk. That is, they should equally prefer two options offering the same average payoff, but with 66 

different probabilities and rewards for any given decision. In practice, however, humans and 67 

nonhuman animals reliably avoid or seek risk, often paying large penalties for their choices. For 68 

example, vendors of consumer electronics sell extended warranties that are only useful in the 69 

unlikely situation that the device breaks within a certain timeframe. Such warranties are known 70 

to be poor investments, yet their continuing popularity attests to people’s willingness to pay 71 

money to reduce uncertainty.  72 

In general, humans and other animals are risk averse (Kacelnik & Bateson, 1996; 73 

Kahneman & Tversky, 1979; Rabin, 2000); that is, they will reliably pay a premium to reduce 74 

risk. Risk sensitivity in humans is typically assessed by examining responses made to 75 

hypothetical questions concerning simple choices between two lotteries offering different reward 76 

payoffs with different probabilities. In such situations, people typically require a bonus, known 77 

as the risk premium, before they will choose the risky option. Studies of nonhuman animals have 78 
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generally found that they, like humans, are risk averse (Kacelnik & Bateson, 1996). Given the 79 

constraints of working with non-linguistic species, risk sensitivity in animals is generally tested 80 

by examining responses of individuals trained to choose between two options offering food 81 

rewards offered with different probabilities. Such tests have been performed on species as 82 

phylogenetically distinct as bees and rhesus macaques (Hayden & Platt, 2007; Shafir, 83 

Wiegmann, Smith, & Real, 1999). Despite the large differences between human and animal 84 

studies, the reliable observation of risk aversion in humans and animals suggests that it is 85 

widespread and divorced from experimental context (Kacelnik & Bateson). 86 

A closer investigation, however, reveals that risk aversion is not ubiquitous. In fact, there 87 

are a surprisingly large number of situations that promote risk seeking. In general, it appears that 88 

risk preferences are highly dependent on context. For example, risk seeking is promoted by small 89 

stakes (Prelec & Loewenstein, 1991; Weber & Chapman, 2005), low probabilities (Kacelnik & 90 

Bateson, 1996), and framing as a loss (Tversky & Kahneman, 1981). In fact, the list of contexts 91 

that promote risk seeking is so extensive that these situations do not seem to be exceptions. 92 

Instead, it appears that risk preferences are fundamentally context-dependent (see Table 1). 93 

 94 

The utility curve 95 

Since the work of Daniel Bernoulli, economists have sought explanations for risk 96 

aversion. Bernoulli proposed that risk-sensitivity could be explained by the shape of a 97 

hypothetical construct known as the utility curve (also see Von Neumann and Morgenstern 98 

1944). The utility curve indicates the subjective value (or utility) derived from a given quantity 99 

of a good. Bernoulli knew that the benefit one obtains from any particular good tends to decline 100 

as one obtains more of that good (the law of diminishing marginal utility). This law gives the 101 
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utility curve its characteristic concave shape (see panel A of Figure 1). The utility curve provides 102 

a satisfying explanation for risk aversion. With diminishing marginal utility, the utility of the 103 

safe outcome (the vertical line labeled “safe” in panel A of Figure 1) is necessarily greater than 104 

the average utility of the two “risky” goods shown in the same panel (compare the two horizontal 105 

dashed lines). Thus the concavity of the utility curve offers a satisfying, elegant explanation for 106 

risk aversion and helps to predict the appeal of a specific gamble to a particular individual.  107 

 The concave utility curve account of risk sensitivity has faced several major challenges. 108 

First, as noted above, risk aversion is not nearly as universal as generally supposed. Second, in 109 

practice it is nearly impossible to estimate an individual’s utility function without asking him or 110 

her questions about risk, a disturbingly circular approach. The impracticality of validly 111 

ascertaining an individual’s utility curve makes it difficult to exploit the predictive power offered 112 

by the utility curve account. Another problem arises as a direct consequence of the weak 113 

assumption that utility curves are continuous and have monotonically decreasing derivatives. 114 

Given these assumptions, observed levels of risk aversion for small stakes necessarily lead to 115 

ridiculously large levels of risk aversion for larger stakes (Rabin, 2000; Rabin & Thaler, 2001). 116 

However, without these simple assumptions, the utility curve model loses much of its 117 

explanatory power. Finally, it is not clear that decisions regarding hypothetical goods accurately 118 

reflect true individual preferences (Holt & Laury, 2002), or even whether people hold stable 119 

preferences that are expressed in their choice behavior (Ariely, Loewenstein, & Prelec, 2005). 120 

Such failures of the basic assumptions of economic theory make it impossible to satisfactorily 121 

explain risk sensitivity within the context of axiomatic economic principles such as utility theory.  122 

 123 

Prospect Theory 124 
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Another major challenge to the traditional utility curve account comes from prospect 125 

theory (Kahneman & Tversky, 1979, 2000). Prospect theory comprises three specific hypotheses. 126 

First, individuals make decisions with respect to changes in current wealth state, rather than with 127 

respect to absolute wealth. Second, the utility curve has a characteristic shape that differs from 128 

the one proposed by Bernoulli. As shown in panel B of Figure 1, the utility curve is concave for 129 

gains and convex for losses, has a steeper slope for losses, and is not continuously differentiable 130 

at the zero point. This characteristic shape leads to risk aversion for gains (as in panel A) and risk 131 

seeking for losses (the latter occurring because the average of the risky losses is less aversive 132 

than the assured loss). Third, as shown in panel C of Figure 1, decision makers transform 133 

reported probabilities according to a specific function that over-weights low probabilities and 134 

under-weights high probabilities. This property explains why a single person may both play the 135 

lottery (over-weighting the low probability of winning the jackpot) and purchase disaster 136 

insurance (under-weighting the high probability of avoiding disaster).  137 

The aspect of prospect theory that has received the most attention is the asymmetry 138 

between the domains of gains and losses (Bernartzi & Thaler, 1995; Kahneman & Tversky, 139 

1979; Tversky & Kahneman, 1991), a difference well-illustrated by one of the original scenarios 140 

constructed by Kahneman and Tversky. In the Asian Disease Problem, participants make a 141 

hypothetical choice between safe and risky medical interventions for an infected population 142 

(Tversky & Kahneman, 1981). In one condition, the choices are framed in terms of lives lost; in 143 

the other, choices are framed in terms of lives saved. Participants are risk seeking in the loss 144 

frame, but risk averse in the gain frame, even though the facts about each intervention program 145 

remain identical across conditions. This framing effect has since been extended to a variety of 146 

scenarios and frame types; indeed, it has even been reported that some nonhuman animals are 147 
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risk averse for gains but risk seeking for losses (Harder & Real, 1987). The ubiquity of risk 148 

aversion for gains and risk seeking for losses suggests that these behavior patterns reflect the 149 

operation of a mechanism that may be adaptive in many common natural environments 150 

(Gigerenzer, Todd, & Group, 1999; Kacelnik & Bateson, 1996; McNamara & Houston, 1986). 151 

  Prospect theory retains a great deal of predictive power, particularly in describing human 152 

behavior with regards to money (Kahneman & Tversky, 2000). However, in many ways, it has 153 

fallen short as a complete theory of risk sensitivity. Most importantly, it does not fully 154 

encapsulate the range of risk sensitive behavior observed in both humans and nonhuman animals. 155 

As discussed above and summarized in Table 1, risk seeking in the gains domain has been 156 

observed in a wide variety of species across a large array of contexts (Dukas & Real, 1993; Gilby 157 

& Wrangham, 2007; Kaminski & Ator, 2001; McCoy & Platt, 2005a). Furthermore, when 158 

gambles are framed as losses, nonhuman animals are not reliably risk seeking, further 159 

diminishing the predictive value of prospect theory (Kacelnik & Bateson, 1996; Marsh & 160 

Kacelnik, 2002).  161 

 162 

Regret 163 

 Acknowledging these weaknesses in both prospect theory and expected utility theory, 164 

others have proposed cognitive accounts of risk sensitivity. For example, regret theory recasts 165 

risk aversion as regret minimization (Bell, 1982; Loomes & Sugden, 1982). Regret is 166 

operationally defined as the difference between the received outcome and the outcome of the 167 

foregone option, and is distinct from disappointment, or the difference between the received 168 

outcome and the greatest alternative outcome from that option. Regret avoidance can induce both 169 

risk aversion (because of the possibility of losing) and risk seeking (because of the possibility of 170 
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a foregone win), assuming the participant knows outcomes will be revealed after the gamble. In 171 

fact, knowledge of the alternative outcome can significantly influence people’s choices: for 172 

example, people are more risk seeking when they will be forced to learn the outcome of the 173 

unchosen option than when they will not (Zeelenberg, 1999), suggesting that regret does regulate 174 

decisions (Humphrey, 2004). Recent studies of the neural mechanisms of regret suggest that 175 

neural substrates of regret aversion are distinct from those that subserve disappointment aversion 176 

(Camille, et al., 2004; Coricelli et al., 2005).  177 

 178 

Scalar utility theory 179 

Another explanation for risk sensitivity emerged from behavioral ecology. Scalar utility 180 

theory explains risk preferences by the observed psychophysical properties of the representation 181 

of quantities (Hamm & Shettleworth, 1987; Kacelnik & Brito e Abreu, 1998; Perez & 182 

Waddington, 1996; Smallwood, 1996). According to Weber’s law, perceptual variance scales 183 

with the mean of stimulus intensity. Thus, as the sizes of two different rewards (or delays) 184 

increase, they will be more and more difficult to discriminate. This property causes the expected 185 

probability distribution of a risky reward, derived from its history, to become positively-skewed 186 

around the true mean, whereas the probability distribution of the fixed reward will be at the true 187 

mean. If decisions reflect the outcome of a competitive process between two samples randomly 188 

selected from the means of two reward distributions, a decision maker obeying Weber’s law will 189 

sample more often from the smaller end of the x axis, and will thus prefer the safe option to the 190 

risky one (Kacelnik & Brito e Abreu). In the case of delays (or, presumably, any other losses or 191 

costs), participants seek to minimize the amount of time until food acquisition, so the risky 192 
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outcome will be preferred. Scalar utility theory therefore predicts both risk aversion toward gains 193 

and risk seeking toward losses.  194 

Evidence for scalar utility effects on risk sensitivity comes from the finding that humans 195 

and other animals typically adhere to Weber’s law in perceptual discrimination of time and 196 

amount (Gibbon, 1977; Gibbon, Church, Fairhurst, & Kacelnik, 1988;but see Bizo, 2006 for 197 

counter-evidence). However, mounting evidence for risk seeking in the gains domain (see Table 198 

1) reduces the appeal of this model. Moreover, it is unclear whether proposed failures of memory 199 

are large enough to explain patterns of economic decision making for humans or nonhuman 200 

animals. 201 

 202 

State variables and risk sensitivity 203 

Another explanation for risk sensitive behavior derives from consideration of the impact 204 

of state variables like energy budgets on decision making. For example, some animals need to 205 

find enough food each day in order to survive to make another choice in the future. Thus, risk 206 

seeking for gains may be the only option for an organism that is on the brink of starvation 207 

(Caraco, 1981). This situation can be generalized to any in which the animal’s utility function is 208 

convex over the range of possible gains. While Risk Sensitivity Theory, as these ideas are called, 209 

elegantly applies ideas drawn from foraging theory to risk sensitive preferences, the required 210 

energy state is so narrow that it has proved difficult to reproduce in a laboratory setting or 211 

confirm in field studies (Kacelnik, 1997). Furthermore, risk seeking has been reliably observed 212 

in situations where animals are far from starvation (Gilby & Wrangham, 2007; Heilbronner et 213 

al., 2008). As revealed in Kacelnik and Bateson’s (1996) literature review, juncos (Junco 214 

hyemalis) in the original studies of state-dependent risk seeking (e.g., Caraco, 1981) may be 215 
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more the exception than the rule. In contrast with songbirds, other animals may store excess 216 

energy as fat, and so may be able to survive for long periods of time without food. For these 217 

reasons, there has been little empirical evidence to support the theory’s predictions.  218 

 219 

Reward salience and risk sensitivity 220 

A final possible explanation for risk sensitivity is the relative salience of the possible 221 

outcomes of the gamble (e.g., Bechara, Damasio, Damasio, & Anderson, 1997), an account we 222 

will call biased anchoring. A salient outcome may be more available to cognitive processes 223 

(memory, value representation, attention, etc), and thus bias decisions (Tversky & Kahneman, 224 

1973). Risk aversion may reflect the use of the loss (from a gamble) as an anchor by which to 225 

judge the expected utility of a given option. Likewise, risk seeking could result from using the 226 

win as an anchor, effectively over-weighting the large payoff from a risky choice. For example, 227 

it is known that humans in a positive mood are more risk averse than controls (Isen & Geva, 228 

1987). Despite their good mood, they exhibit a tendency to think more about the possibility of 229 

losing than do controls (Isen & Geva 1987). These participants’ tendency to avoid risk may 230 

reflect a biased focus on the possibility of losing.  231 

  232 

Summary 233 

Though decision makers are risk averse in many circumstances, there are many other 234 

contexts in which decision makers are reliably risk seeking. We have summarized a few of the 235 

major models designed to explain the full range of risk sensitive behaviors. Although each 236 

account explains risk sensitive behavior in certain contexts, a single general account of risk 237 
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sensitivity remains elusive. It is likely that a richer understanding of the neuronal mechanisms 238 

underlying risk sensitivity can lead to a greater understanding of behavior toward risk.  239 

 240 

Neural signatures of economic risk 241 

 242 

Representations of expected value and risk 243 

Neuroscience offers the opportunity to carve decision making into component processes 244 

(Romo & Salinas, 2003; Schall, 2004). One central goal of the neuroeconomic study of risk-245 

sensitive decision making is to determine where and how these processes are instantiated in the 246 

brain (Glimcher, 2002; Sanfey et al., 2006). In any risky decision, at least two options must be 247 

represented, and for at least one of them, the associated uncertainty will have to be represented as 248 

well. 249 

Several studies have probed the representation of uncertainty in the brain (reviewed in 250 

Knutson & Bossaerts, 2007; Platt and Huettel 2008). One neural substrate that has recently been 251 

implicated in this process is the dopamine system, which is generally linked to the representation 252 

of reward (Schultz, 2006). Dopamine neurons in the substantia nigra pars compacta (SNc) and 253 

the ventral tegmental area (VTA) project to the striatum and to the cortex (Schultz). Reward-254 

predicting cues and unpredicted rewards generally elicit phasic (i.e. brief) responses from 255 

dopamine neurons, while failures to receive predicted rewards phasically suppress their activity 256 

(Bayer, Handel, & Glimcher, 2004; Schultz, Dayan, & Montague, 1997; Tobler, Fiorillo, & 257 

Schultz, 2005). Such responses are thought to encode a reward prediction error, or the difference 258 

between the expected and obtained reward (Montague, Dayan, & Sejnowski, 1996; Schultz et al., 259 

1997), information that is particularly useful for learning in uncertain environments (Sutton & 260 
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Barto, 1998). (For discussion of dissenting views on dopamine function see Redgrave & Gurney, 261 

2006; Ungless, 2004). 262 

Explicit representations of expected and obtained rewards have obvious benefits to the 263 

decision maker. Dopamine’s role in representing uncertain outcomes was examined directly in a 264 

study of the responses of dopaminergic neurons to conditioned stimuli associated with either 265 

fixed or risky rewards (Fiorillo, Tobler, & Schultz, 2003). Monkeys observed one of five visual 266 

stimuli, each associated with a specific likelihood of reinforcement (0%, 25%, 50%, 75%, and 267 

100%). Then, following a delay, the reward was either given or withheld. The authors found that 268 

the population of dopamine neurons, as well as some single dopamine neurons, encoded both the 269 

expected value of the information and its uncertainty (which is maximized at a reward 270 

probability of 50%) in distinct ways. Brief phasic responses signaled the expected value of the 271 

reward, while subsequent tonic changes in activity represented the uncertainty associated with 272 

the stimulus.  273 

These results suggest that dopamine neurons may contribute to the representation of both 274 

reward uncertainty an predicted reward value, an idea that was tested in a recent neuroimaging 275 

study (Preuschoff, Bossaerts, & Quartz, 2006). On each trial, human participants placed a bet on 276 

which of two playing cards ranging from 1 to 10 would have a higher numeric value. One card 277 

was then revealed, informing the participant of how likely they were to win (e.g., revealing a low 278 

number signals a high probability of winning if the subject guessed that the second card would 279 

be the larger of the two). The authors found that blood flow in the dorsal and ventral striatum 280 

(the primary target of dopamine neurons) was correlated with expected value of the gamble (i.e., 281 

the signaled probability of a win), while blood flow in the ventral striatum, the midbrain, and the 282 

mediodorsal thalamus was correlated with risk (which was highest when the first card provided 283 
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no information about the likelihood of a win). Notably, these two signals had different temporal 284 

dynamics: expected value was encoded in the early part of the hemodynamic response, whereas 285 

risk was encoded in the late part of the response. Despite the large difference in the timescales 286 

between the firing rates of single neurons (milliseconds) and the hemodynamic response 287 

(seconds), these results are roughly consistent with the idea that dopamine neurons encode 288 

different forms of reward-related information in early and late portions of their responses.  289 

To fully understand risk sensitive decision making, we will need to dissociate the neural 290 

correlates of risk and expected value. To do so, Knutson and colleagues (2005) used a version of 291 

the monetary incentive delay task (MID). Each participant was presented with a cue indicating 292 

whether money would be won or lost, what the expected value of a win or loss was, and what the 293 

approximate probability of a win or loss would be. Then the participant had to press a button as 294 

fast as possible. If the participant responded quickly enough, the indicated amount was given (or 295 

taken away in the case of losses). Here, expected value was encoded by the nucleus accumbens 296 

(NAcc, a structure that largely overlaps with the ventral striatum), whereas probability was 297 

represented by the medial prefrontal cortex (MPFC).  The authors inferred that emotional 298 

information is maintained within subcortical circuits that include the NAcc, and then is 299 

transmitted to cortical circuits including MPFC, where it is combined with probability and can 300 

ultimately influence the decision.  301 

 302 

Competing systems for losses and gains 303 

How is the gamble actually evaluated in a risky decision? For a risky option, multiple 304 

possible rewards must be combined into a single representation of value. One proposal is that 305 

this combined signal reflects the outcome of a competition between systems representing the 306 
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possibilities of winning and of losing. Given the importance of dopamine neurons for signaling 307 

reward prediction error, this system is a reasonable place to begin looking for a neural basis of 308 

this posited competition. However, at present, it remains unclear whether dopamine neurons are 309 

capable of representing negative reward predictions or outcomes (Bayer et al., 2004; Schultz, 310 

2006). Neurons that represent negative reward prediction errors have been located within the 311 

lateral habenula, a structure within the diencephalon (Matsumoto & Hikosaka, 2007); such 312 

neurons may provide a functional complement to dopamine neurons. In addition, several cortical 313 

regions, including the dorsolateral prefrontal cortex (DLPFC)(Kobayashi et al., 2006), the 314 

amygdala (Gottfried, O'Doherty, & Dolan, 2003; Paton, Belova, Morrison, & Salzman, 2006), 315 

the posterior cingulate cortex (McCoy, Crowley, Haghighian, Dean, & Platt, 2003), and the 316 

orbitofrontal cortex (Gottfried, O'Doherty, & Dolan, 2002; Zald, Hagen & Pardo, 2002) contain 317 

heterogeneous populations of neurons whose responses code for both gains and losses (or for 318 

larger and smaller than expected wins).  319 

Given that different structures may encode winning and losing, the valuation of a risky 320 

option could reflect the outcome of a compromise between signals carried by separate brain 321 

regions. This hypothesis has been tested in several neuroimaging studies. In one, participants 322 

made investments in a simulated stock market (Kuhnen & Knutson, 2005). The experimenters 323 

found that risk seeking decisions were preceded by activation in the ventral striatum. Because the 324 

ventral striatum is a primary target of dopamine neurons (discussed above), activation there is 325 

likely correlated with dopamine release. In contrast, risk averse and risk neutral decisions were 326 

preceded by activation in the insula. In prior studies, the insula has been most reliably activated 327 

by aversive or unpleasant stimuli. The authors hypothesized that risk seeking in this task is 328 

mediated by a brief positive affect associated with the gamble, while risk aversion is mediated by 329 
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a brief negative affect. These ideas imply that the decision to gamble reflects the outcome of 330 

competition between distinct areas representing the possibility of winning and the possibility of 331 

losing.  332 

A recent study has challenged the notion that separate anatomical areas mediate the 333 

representation of winning versus losing (Tom, Fox, Trepel, & Poldrack, 2007). Participants on 334 

each trial indicated their level of preference for a gamble offering equal probabilities of winning 335 

or losing money. To tempt the generally risk averse participants into gambling, the average size 336 

of the gain was set to about twice the average size of the loss. To specifically isolate decision 337 

utility, the authors did not resolve the gambles until after a delay. Surprisingly, although the 338 

authors found a standard set of areas exhibiting positive correlation with the size of the potential 339 

win, they did not find any brain region whose responses were positively correlated with possible 340 

losses. One explanation for this discrepancy reflects the difference between decision utility (the 341 

amount of utility expected at the time of the decision) and experienced utility (the amount of 342 

utility actually gained). The authors argue that their focus on decision utility, as opposed to 343 

experienced utility, allowed them to eliminate confounding factors such as prediction error. They 344 

suggest that earlier studies that found discrete brain regions activated for potential gains and 345 

losses may in fact reflect a combination of these confounding factors. These results indicate that 346 

the pre-decision competition between representations of the possibility of winning and losing 347 

may take place within single brain areas rather than between different brain areas.  348 

Whether the possibilities of winning and losing are represented in the same or different 349 

brain areas, it is clear that seemingly extraneous factors, such as the way a gamble is framed, can 350 

bias the relative influence of potential outcomes. One recent study has identified a neural 351 

substrate for the effects of framing on risk-sensitive decision making (De Martino, Kumaran, 352 
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Seymour, & Dolan, 2006). The authors asked participants to make decisions in a series of 353 

gambles, some of which were framed as gains and others of which were frames as losses. The 354 

extent to which framing biased choices varied across individuals. The authors showed that 355 

individual susceptibility to framing was reflected in activation in the amygdala. Because the 356 

amygdala is associated with emotional information processing, they concluded that framing is 357 

fundamentally an emotional process. In contrast, they found that activation in the orbitofrontal 358 

and mediofrontal cortices was correlated with reduced susceptibility to framing. 359 

 360 

Neurophysiological correlates of risky decision making 361 

The neural mechanisms of calculating and storing evaluative information remain 362 

unknown. Previous studies have shown that the firing rates of single neurons in the lateral 363 

intraparietal area (LIP) of primate parietal cortex are positively correlated with the expected 364 

value of visual orienting movements (Platt & Glimcher, 1999). Monkeys in these types of studies 365 

are typically rewarded with a small squirt of juice for correct performance. When the likelihood 366 

of receiving the reward was instead set at 50%, the authors found that the expected value of the 367 

movement and the firing rate of the neurons decreased in concert. LIP neurons also encode 368 

expected value when it is determined by information gathered from recent trials (Sugrue, 369 

Corrado, & Newsome, 2004) or by the Nash equilibrium optimal strategy in a competitive game 370 

(Dorris & Glimcher, 2004).  371 

The next obvious step in understanding this circuitry is to find the source of the reward 372 

information that modulates neuronal activity in LIP. Several studies from our lab support the 373 

hypothesis that one source of this information is the posterior cingulate cortex (CGp) (Dean, 374 

Crowley, & Platt, 2004; Dean & Platt, 2006; McCoy et al., 2003; McCoy & Platt 2005a). CGp is 375 
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a cortical structure that receives direct and indirect projections from several reward-related 376 

structures, including the orbitofrontal cortex, the anterior cingulate cortex, and the striatum (Vogt 377 

& Gabriel, 1993). CGp projects to the parietal cortex (Kobayashi & Amaral 2003; Vogt & 378 

Gabriel, 1993), as well as other areas contributing to action-based decision making (Dorris & 379 

Glimcher, 2004; Platt & Glimcher, 1999; Shadlen & Newsome, 2001; Sugrue et al., 2004; Yang 380 

& Shadlen 2007).  381 

Our studies (Dean et al., 2004; McCoy et al., 2003) indicate that individual CGp neurons 382 

respond with relatively long-lasting changes in activity following movements toward a target that 383 

predicts a reward (Figure 2C). Many of these neurons signal the value of the reward expected or 384 

experienced for executing the movement. This information appears to be encoded in positive or 385 

negative terms by separate populations of CGp neurons. In other words, CGp neurons are 386 

monotonically tuned for reward size, in the same way that neurons in other parts of the brain are 387 

tuned for orientation, brightness, or motion direction. Notably, some CGp neurons are positively 388 

tuned (higher firing for larger rewards and lower firing for smaller rewards) while others are 389 

negatively tuned. This heterogeneity means that the aggregate neuronal signals from positively 390 

and negatively tuned neurons may average out, and that the greater neuronal population may not 391 

encode reward size. This fact in turn means that CGp neuronal populations should project onto 392 

different downstream or readout neurons. Another interesting feature of this area is that many 393 

CGp neurons exhibit enhanced responses to unexpected omissions of rewards (McCoy et al., 394 

2003). This response property is reminiscent of dopamine neurons (see above), and suggests that 395 

CGp monitors the consequences of actions to guide changes in behavior. In any case, the 396 

heterogeneity in reward encoding links CGp with other brain areas, including the amygdala, 397 

DLPFC, and OFC, in which the activity of individual neurons is both positively and negatively 398 
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correlated with reward size (Gottfried et al., 2002; 2003; Kobayashi et al., 2006; Paton et al., 399 

2006; Zald et al., 2002).  400 

These prior observations suggested that CGp might contribute to the computations 401 

underlying risk-sensitive decision making. To examine the contribution of CGp to risky decision 402 

making, we recorded the activity of single CGp neurons during a gambling task (McCoy & Platt, 403 

2005b). In this task, monkeys chose between two targets: the safe target reliably offered a 404 

middle-sized reward; the risky target stochastically offered either a larger or smaller reward. 405 

Monkeys strongly preferred the risky target even though the risky and safe options were matched 406 

for expected value. In fact, as risk level (defined as the variance of the two possible outcomes of 407 

the risky option: CV in Figure 2D) increased, the monkeys’ tendency to choose the risky option 408 

rose from 55% to 80%. As can be seen in Figure 2D, we found long-lasting (200ms to 2 sec) 409 

changes in the responses of these neurons that were correlated with risk. In addition, CGp 410 

neurons fired more vigorously after monkeys chose the risky option than after monkeys chose 411 

the safe option. These results suggest that CGp maintains representations of the value of 412 

uncertain options for use by downstream decision structures in the parietal lobe and elsewhere.  413 

 414 

Expected and unexpected forms of uncertainty 415 

Most studies of risk-sensitive decision making focus on tasks in which the level of risk is 416 

well-defined to both the experimenter and to the participant. That is, all parties are assumed to 417 

know that the outcome of any risky choice is fully stochastic, and that no information can be 418 

gathered that will reduce the amount of uncertainty associated with the risky option. However, 419 

there is evidence that the brain deals with different forms of uncertainty in different ways.  420 
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Several authors have found it useful to divide uncertainty into measurable and un-421 

measurable forms (Ellsberg, 1961; Knight, 1921), two forms of uncertainty that are sometimes 422 

called knowable and unknowable, or expected and unexpected. Whereas measureable uncertainty 423 

is characterized by a precise numerical description of the possible outcomes, un-measurable 424 

uncertainty is characterized by probabilities that are not known or that cannot be known. Un-425 

measurable uncertainty sometimes includes the uncertainty associated with a single event drawn 426 

from a stochastic distribution (Knight, 1921). The terms un-measurable uncertainty, unexpected 427 

uncertainty, and ambiguity, while perhaps used in subtly different ways, probably represent 428 

states along a continuum of uncertainty, and we will not strongly distinguish among them here. 429 

In most studies of decision making in humans, participants are presented with precise 430 

numerical descriptions of the different probabilities associated with different outcomes; this form 431 

of uncertainty is known. Likewise, in most animal studies, subjects are so well-trained that the 432 

animal can be assumed to have a stable internal representation of the likelihood of outcomes, so 433 

risk is thought to be known. However, many situations, especially those outside the laboratory, 434 

present un-measurable uncertainty (Knight, 1921). In such situations, decision makers need to 435 

pay more attention, learn more quickly, and search for sources of information that will allow 436 

them to gain information about contingencies in their environment (Yu & Dayan, 2005).  437 

Measurable and un-measurable forms of uncertainty have some intuitive linkage with 438 

expected and unexpected forms of uncertainty discussed in neuroscience. Separate neuronal 439 

systems may mediate expected and unexpected forms of uncertainty (Yu & Dayan, 2005). 440 

Specifically, it has been speculated that the acetylcholine system (ACh) signals the expected 441 

uncertainty in a given situation (Yu & Dayan, 2002) while the norepinephine system (NE) 442 

signals unexpected uncertainty (Aston-Jones & Cohen, 2005; Dayan & Yu, 2006). These two 443 
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neuromodulators are thus thought to have complementary roles in decision making. 444 

Acetylcholine and norepinephrine both act by biasing cortical processing from feedback-driven 445 

(top-down) to stimulus-driven (bottom-up) responses by suppressing the activity of intracortical 446 

neurons (Aston-Jones & Cohen, 2005; Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-447 

Jones, 1999), thereby facilitating responsiveness to changes in the environment and stimulating 448 

learning (Yu & Dayan, 2005). The precise mechanisms by which these transmitters act may 449 

allow them to specifically potentiate the differential responses to unexpected and expected forms 450 

of uncertainty (Yu & Dayan, 2005).  451 

In economics, the distinction between risk and ambiguity is exemplified by the Ellsberg 452 

paradox (Ellsberg, 1961). Consider two bags full of red and blue balls. Bag 1 holds 50 red and 50 453 

blue balls. Bag 2 contains n red and 100-n blue balls, where n is randomly chosen between 0 and 454 

100. One ball will be chosen at random from one of the bags, and a payoff of $10 will be given 455 

for the red and $1 for the blue. Although the expected value of the two bags is identical, most 456 

participants will prefer the first (risky) bag to the second (ambiguous) bag. This predilection for 457 

choosing the option with a known uncertainty is referred to as ambiguity aversion. 458 

In a recent study, the neural correlates of ambiguity aversion were assessed using three 459 

complementary methods (Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005). In one, participants 460 

chose between a risky and an ambiguous decision using cards. In another, participants gambled 461 

on topics about which they felt that they had more or less background information (“Was the 462 

temperature in New York/Bishkek greater than 60 degrees on October 15th last year at 5 pm?”). 463 

In the third condition, they competed against players with more information than they had in a 464 

gambling game. The authors found that, across the three conditions, the level of ambiguity was 465 

positively correlated with the level of activation in the orbitofrontal cortex (OFC) and the 466 
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amygdala, and negatively correlated with the level of activity in the striatum. In addition, 467 

participants with OFC lesions were insensitive to the level of ambiguity in a gamble. These 468 

convergent results suggest that the OFC contributes directly to ambiguity aversion. 469 

Ambiguity preferences were also studied in a second recent neuroimaging study (Huettel, 470 

Stowe, Gordon, Warner, & Platt, 2006). On each trial, participants chose between two gambles, 471 

each identified by a circle on a screen. Gambles were either certain (a full circle), risky (with 472 

circle portions corresponding to the probabilities of the two outcomes), or ambiguous (empty 473 

circle). Behavioral data for each participant was fit with separate parameters for risk and 474 

ambiguity preference levels. Each individual’s ambiguity seeking was most strongly predicted by 475 

activation in the lateral prefrontal cortex. Because activation in this region is associated with 476 

cognitive control, it was inferred that ambiguity preference reflects successful control of the 477 

prepotent urge to avoid ambiguity. Furthermore, activation in this area was negatively correlated 478 

with a clinical measure of impulsivity. In contrast, risk preference correlated with activity in the 479 

parietal cortex, a finding that is reminiscent of findings from other physiological studies that the 480 

parietal cortex represents quantitative information in contexts with low uncertainty (Platt & 481 

Glimcher, 1999; Roitman, Brannon & Platt, 2007; Sugrue et al., 2004).  482 

 483 

Summary 484 

Researchers are in the early stages of identifying the neural substrates responsible for 485 

integrating information about current needs and reward history and using this information to 486 

select appropriate behaviors. Such areas appear to be critical for decision making in risky 487 

contexts, because they estimate and represent the likelihood of different outcomes and participate 488 

in selecting specific options. Critical brain regions include the striatum, the orbitofrontal cortex, 489 
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and the cingulate cortex. Dopamine, which signals expected reward, is a particularly important 490 

neuromodulator regulating both risky and certain decisions. Future studies will focus on 491 

identifying the specific roles of these areas and brain chemicals in different aspects of risky 492 

decision making.  493 

 494 

Functional manipulation of risk preferences 495 

 496 

 Manipulating decision making processes directly tests theories about their underlying 497 

neural mechanisms, permitting us to distinguish effects correlated with behavior from those that 498 

cause behavior. Moreover, manipulation represents one of the ultimate goals of this research: 499 

given the ubiquity of failures to accurately deal with uncertainty in several psychiatric disorders, 500 

treatments for suboptimal risky decision making are a potential target for therapies.  501 

Affect influences one’s propensity to gamble. Positive affect is a cognitive state 502 

characterized by a positive outlook, greater engagement in the environment, and a general 503 

tendency to experience good moods. It can be induced via participant gifts, winning at 504 

competitive games, or even autobiographical recall of positive events. Participants in a positive 505 

state typically exhibit a greater optimism about their prospects in a gambling situation (Nygren, 506 

Isen, Taylor, & Dulin, 1996). They overestimate the likelihood of rare positive events and 507 

underestimate the likelihood of rare negative events. Paradoxically, these participants have a 508 

reduced tendency to accept any gamble. Consistent with this observation, they require a greater 509 

probability of winning than control participants to induce risk seeking behavior (Isen & Geva, 510 

1987).  511 
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Risk aversion among participants with positive affect is certainly puzzling. These 512 

participants showed reduced utility for gains and increased disutility for losses (Isen, Nygren, & 513 

Ashby, 1988). Although participants with positive affect are reliably more optimistic than control 514 

participants and focus more on positive thoughts and memories (Mischel, Ebbesen, & Zeiss, 515 

1973), they show a greater tendency to list thoughts about loss, suggesting that their decisions 516 

are anchored to the possibility of losing (Isen & Geva, 1987). These results suggest that 517 

participants with positive affect enjoy their state, are aware of its lability, and will adopt 518 

cognitive and behavioral strategies designed to maintain their affect.  519 

Negative affect is a cognitive state characterized by a negative orientation towards the 520 

present situation and life in general, by recurring negative and pessimistic thoughts that often 521 

cause distress, and by a tendency towards bad moods. Participants in whom negative affect has 522 

been induced exhibit greater pessimism about their likelihood of winning gambles but are more 523 

risk-seeking. This tendency is especially pronounced in situations with low probabilities of 524 

winning (lotteries), and in situations in which one possible outcome (such as a loud annoying 525 

sound) is aversive (Leith & Baumeister, 1996). In general, the behavioral consequences of 526 

negative affect and depression tend to overlap. Even though they are thought to be generated by 527 

different processes (Hartlage, Alloy, Vazquez, & Dykman, 1993), understanding negatively 528 

motivated risk sensitivity may help us treat depression.  529 

Another method of inducing risk sensitivity is direct manipulation or activation of neural 530 

tissue. The simplest way to do this is to provide transcranial magnetic stimulation (TMS) to the 531 

scalp, which, depending on the stimulation conditions, can activate or inactivate underlying 532 

populations of neurons. Two studies of this kind examined the role of the dorsolateral prefrontal 533 

cortex in risk-sensitive decision making. TMS-induced de-activation of right DLPFC promoted 534 
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risk seeking, even when it was financially disadvantageous (Knoch et al., 2006). Although this 535 

effect may be explained by a transient induction of negative affect (Gershon, Dannon, & 536 

Grunhaus, 2003), the authors argue that the rDLPFC normally suppresses the tendency to choose 537 

the more seductive risky option, and disruption of this brain area leads to a release from 538 

suppression of this risk averse tendency. Notably, this hypothesis provides a nice link between 539 

the concepts of self-control and risk. Consistent with this idea, activation of the DLPFC through 540 

transcranial direct current stimulation (tDCS) promotes risk aversion (Fecteau et al., 2007). Such 541 

results are especially interesting given the observed activation of these areas in decision making 542 

under ambiguity (Huettel et al., 2006).  543 

 544 

Summary 545 

Risk preferences are not static. Instead, they are highly labile, and depend on a variety of 546 

circumstances. Experimenters can manipulate these circumstances to predictably alter risk 547 

preferences. Such manipulations provide strong tests of the validity of neural models of risky 548 

decision making.  549 

 550 

Impulsivity and risk sensitivity 551 

 552 

 Just as decisions deviate from normative ideals when options are uncertain, so do 553 

decisions deviate when options are delayed. Humans and other animals generally exhibit a 554 

preference for immediacy, preferring sooner rewards to later ones, and seeking to defer 555 

unpleasant outcomes (but see Frederick, Loewenstein, & O'Donoghue, 2002). Such behavioral 556 

impulsiveness has long been associated with risk sensitivity. Nonetheless, the precise 557 
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relationship between these two behavioral patterns and the relationships between their 558 

underlying neural mechanisms remain obscure.   559 

Two distinct ideas about the relationship between impulsivity and risk sensitivity have 560 

emerged. In one view, “general impulsivity” is a personality trait that encompasses a suite of 561 

potentially maladaptive behaviors, including both risk seeking and high devaluation of future 562 

rewards (see Myerson, Green, Hanson, Holt, & Estle, 2003). Impulsive individuals are risk 563 

seeking, fail to fully consider the consequences of decisions, and do not accurately weigh costs 564 

and benefits. General impulsivity has been implicated in a variety of psychiatric disorders, 565 

including drug and gambling addiction (e.g. Mitchell, 1999) the manic phase of bipolar disorder, 566 

schizophrenia, attention deficit hyperactivity disorder, and even some personality disorders 567 

(Henry et al., 2001; Oades, Slusarek, Velling, & Bondy, 2002).  568 

Performance on a temporal discounting task, a measure of impulsivity, can also predict 569 

academic performance, social competence, and successful handling of stressful situations 570 

(Mischel, Shoda, & Rodriguez, 1989), suggesting that general impulsivity influences all of these 571 

behavioral tendencies. Thus, short time horizons and risk seeking behavior (to the point of 572 

obsessive gambling) may be comorbid, implying a common underlying cause. Studies of human 573 

pathologies have provided some empirical support for this linkage. For example, addicted 574 

smokers are more impulsive than non-smokers on a temporal discounting task (Mitchell, 1999), 575 

and they are also more likely to be problem gamblers (Petry & Oncken, 2002).  576 

In contrast to the idea of general impulsivity, the relationship between impulsivity and 577 

risk sensitivity may be explained by the concept of interruption risk.  The future is inherently 578 

uncertain: a delayed reward is riskier than its more immediate counterpart. Any number of events 579 

may devalue a delayed reward— food could rot, a giver could renege on his or her offer, the 580 
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chooser’s energy or monetary demands may change, etc. (McNamara & Houston, 1986). One 581 

simple prediction of the idea that risk mediates impulsivity is that devaluation of future rewards 582 

should be consistent across time spans, since the possible risk is, on average, the same across 583 

periods. However, humans and nonhuman animals do not exhibit such behavior (e.g. Ainslie & 584 

Haslam, 1992; Madden, Begotka, Raiff, & Kastern, 2003; Mazur, 1987). Instead, they generally 585 

show a preference reversal:  in a choice between $5 now and $6 in a month, participants may 586 

prefer the $5, but if the choice is between $5 in 12 months and $6 in 13 months, they are likely to 587 

prefer the $6. This behavioral inconsistency demonstrates that impulsivity must reflect more than 588 

just interruption risk. Nevertheless, uncertainty is probably still a major force behind impulsivity 589 

in inter-temporal choice (Rachlin, 2000). This perspective offers the counterintuitive prediction 590 

that individuals who are more willing to wait for delayed rewards should be more risk seeking. 591 

Interestingly, in a straightforward questionnaire, human participants were slightly more likely to 592 

take a risk if they were relatively patient in a temporal discounting task (Myerson et al., 2003).  593 

 Additionally, participants may perceive choices between engaging in risk seeking and 594 

risk averse strategies as ones that they will follow for several trials. If participants construe the 595 

risky option to be virtually certain to pay off at some point, then their attitudes about the relative 596 

appeal of sooner and later rewards become important (Rachlin, 2000; Rachlin, Raineri, & Cross, 597 

1991). Our lab recently found that by varying the time between choices (the inter-trial interval or 598 

ITI), we could influence the likelihood that monkeys would gamble in a sequential choice task 599 

(Figure 3, Hayden & Platt, 2007). Specifically, monkeys were risk seeking with short ITIs and 600 

risk neutral with long ITIs (Figure 3C). Moreover, the precise level of risk seeking was predicted 601 

by the hyperbolic discount function inferred from inter-temporal choice data. Such results are 602 

predicted by Rachlin’s String Theory (2000), which argues that gambles may be construed as a 603 
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series of outcomes in the future (Figure 3A and B). If the possibility of winning is more salient 604 

than the possibility of losing, then future outcomes may be grouped into strings of losses 605 

followed by a win. Such a construal biases the subjective likelihood of winning. These results 606 

imply that choices about risky options have an important temporal component, and that 607 

preferences and perceptions about reward rates help to shape preferences.    608 

 While a comprehensive review of the mechanisms supporting impulsive decision making 609 

is beyond the scope of this chapter (see chapters 4 and 5 of this volume), we will highlight just 610 

two of the important areas of convergence between studies of the neural mechanisms of risk and 611 

impulsivity. We can ask first whether there are patients with brain damage who show abnormal 612 

risk preferences or temporal discounting rates. Likely candidates are those with damage to the 613 

ventromedial prefrontal cortex (VMPFC). Although such patients typically lie within a normal 614 

range of performance on most cognitive tasks, they exhibit deviant decision making patterns. For 615 

example, on the Iowa Gambling Task (IGT), participants repeatedly choose among decks of 616 

cards with different reward and probability parameters. VMPFC patients will continue to pick a 617 

deck that is disadvantageous in the long-term but offers occasional large payoffs (Bechara et al., 618 

1997). These failures have been attributed to myopia for future rewards (Bechara, Damasio, 619 

Damasio, & Anderson, 1994; Bechara, Tranel, & Damasio, 2000). Although VMPFC patients do 620 

not exhibit deviant patterns of temporal discounting, they do show shorter time perspectives (a 621 

measure of how far into the future one regularly considers) than control participants (Fellows & 622 

Farah, 2005). Furthermore, in addition to being future myopic, the patients’ behavior on the IGT 623 

could be interpreted as risk seeking, perhaps attributable to hyper-sensitivity to wins (but see 624 

Bechara et al., 2000). Indeed, in a traditional gambling task, VMPFC patients are relatively risk 625 
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seeking (Sanfey, Hastie, Colvin, & Grafman, 2003). The co-occurrence of abnormal time 626 

perspectives and risk seeking suggests that the VMPFC may subserve both types of decisions.  627 

Future studies of the relationship between impulsivity and risk sensitivity may focus on 628 

dopamine. Although no study has investigated the idea that dopamine mediates both impulsivity 629 

and risk sensitivity, the evidence is tantalizing. Dopamine agonists used to treat Parkinson’s 630 

Disease may induce pathological gambling (Dodd et al., 2005), and abnormal dopamine 631 

functioning may produce impulsivity (Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 632 

2001). Dopamine may mediate both processes by activating cortex, both directly through the 633 

mesocortical pathway and indirectly through striatal projections. Such activations may induce 634 

general approach behavior, both to risky options and to immediate options (Schultz, 2006). 635 

The common role of dopamine in both risk seeking and impulsivity is consistent with the 636 

idea that dopamine serves as a general reward signaling molecule. Dopamine may in fact 637 

participate in hypothesized domain-general reward decisions. Economic theories elegantly unite 638 

ideas about different types of valuation into a single common framework. Such theories allow 639 

the direct comparison of possible outcomes that differ along different dimensions, such as 640 

expected value, risk level, and delay.  641 

 642 

Summary 643 

Many authors have noted that responses to probabilistic rewards and delayed rewards 644 

have much in common. The fact that both risky options and delayed options tend to be 645 

discounted provides a second impetus to develop a common framework to explain the effects of 646 

both factors on decision making. Determining the mechanistic bases of these types of decisions 647 

remains a central goal of neuroeconomics.  648 

649 
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 907 
FIGURE CAPTIONS 908 

 909 
FIGURE 1. Utility-based models of risk 910 
A. A hypothetical utility curve. Participants are assumed to value rewards in a way that differs 911 
systematically from the associated numerical values. Typically, the value of a reward rises more 912 
slowly than its numerical value. The distinction between a value and utility can explain some 913 
forms of risk aversion. Although the expected value (abscissa) of the safe and risky reward (i.e., 914 
the average of the two risky rewards) may be the same, the expected utility (ordinate) of these 915 
options may differ systematically. For a concave utility curve (such as that shown here), the 916 
expected utility of a gamble is smaller than the expected utility of a safe option.  917 
B. Utility curve and probability transform function according to prospect theory. Prospect theory 918 
hypothesizes a concave utility function for gains and a steeper convex utility function for losses.  919 
C. Prospect theory also hypothesizes that probabilities are weighted non-linearly. High 920 
probabilities are underweighted while low probabilities are over-weighted.  921 
 922 
FIGURE 2. Neurophysiological correlates of reward and risk. 923 
A. Responses of a hypothetical positive reward prediction error neuron. When an unexpected 924 
reward occurs, firing rate increases phasically. When a reward is expected but no reward occurs, 925 
firing rate drops phasically. Responses of dopamine neurons are similar to these hypothetical 926 
neurons, although the extent to which they encode expected reward omissions remains unclear.  927 
B. Responses of hypothetical negative reward prediction error neurons. When an unexpected 928 
reward occurs, firing rate falls phasically. When a reward is expected but no reward occurs, 929 
firing rate rises phasically. Responses of habenula neurons may instantiate negative reward 930 
prediction error signals.  931 
C. Responses of posterior cingulate cortex neurons vary with reward size. These neurons 932 
respond differentially to reward size both before and after the occurrence of the reward. Across 933 
the population of neurons, some neurons are positively tuned for reward size while others are 934 
negatively tuned for reward size. After McCoy et al. 2003. 935 
D. Responses of posterior cingulate cortex neurons vary with risk. These neurons respond more 936 
strongly to choices of the risky option than choices of the safe option. In addition, these neurons 937 
respond with higher tonic firing rates for higher risk levels (CV). After McCoy and Platt 2005. 938 
 939 
FIGURE 3. Risk and impulsivity: one model 940 
A. According to Rachlin’s String Theory, repeated gambles may be construed as a series of 941 
outcomes in the future. If the possibility of winning is more salient than the possibility of losing, 942 
then future outcomes may be grouped into strings of losses followed by a win. Such a conception 943 
biases the subjective likelihood of winning.  944 
B. Future outcomes are discounted according to a hyperbolic decay function. Strings of losses 945 
followed by a win may not be evaluated until the end of the string. By this process, the delay 946 
between sequential trials may influence the utility of the prospect of a gamble.  947 
C. One way to test this possibility is to examine the influence of the delay between trials on risky 948 
behavior. We have recently shown that monkeys’ propensity to gamble is a decreasing function 949 
of the delay between trials in a sequence. These results link together the concepts of risk and 950 
impulsivity. After Hayden and Platt 2007. 951 
 952 

953 
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TABLES 953 
 954 
Table 1: Situations that promote risk-seeking behavior 955 
Short inter-trial intervals Hayden & Platt (2007); McCoy & Platt 

(2005b) 
Long inter-trial intervals Kaminski & Ator (2001) 
Negative energy states Caraco (1981) 
Rich foraging environments Gilby & Wrangham (2007) 
Severe memory constraints Dukas & Real (1993) 
Lack of cultural norms concerning money Henrich & McElreath (2002) 
Decisions from experience Hertwig, Barron, Weber, & Erev (2004) 
Loss frames Tversky & Kahneman (1981) 
Losses  Kahneman & Tversky (1979) 
Hypothetical payouts Holt & Laury (2002) 
Small rewards Prelec & Loewenstein (1991); Weber & 

Chapman (2005) 
Negative affect Leith & Baumeister (1996) 
Positive affect Isen & Patrick (1983) 
Anger Lerner & Keltner (2001) 
Variable delays Kacelnik & Bateson (1996) 
Low probability of gain Tversky & Kahneman (1992) 
 956 
Table 1: Although risk aversion is generally assumed to be universal for both humans and 957 
animals, the list of situations promoting risk seeking is surprisingly long. The length and 958 
heterogeneity of this list provides a challenge to general theories of risk, most of which assume 959 
that risk aversion is universal.  960 


