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Abstract  20 

 21 

Reported sex differences in decision-making and learning can be inconsistent across studies. One 22 

interpretation is that these sex differences are not driven by differences in ability, but by 23 

differences in strategy, which interact with task design. Here, we examined the strategies adopted 24 

by female and male mice as they learned the value of stimuli that varied across two dimensions. 25 

Female mice mastered image-value associations more quickly than male mice, and that they used 26 

a fundamentally different strategy to do so. Female mice constrained their decision-space early in 27 

learning. Conversely, male strategies changed frequently and were more influenced by the 28 

stochastic rewards. Individual strategies were related to sex-gated changes in neuronal activation 29 

in early learning. Together, we find that sex drives divergent strategies for learning, revealing 30 

substantial unrecognized variability in reward-guided decision-making and learning.  31 
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Introduction 32 

 33 

Sex differences have been identified in many studies of reward-guided decision-making, seen 34 

across multiple mammalian species, and gender differences have been reported in humans (1–5). 35 

In some tasks males acquire more total rewards than females, a result that is sometimes 36 

interpreted as a male advantage in learning (6, 7). However, seemingly minor changes to task 37 

paradigms can produce the opposite result. In fact, in some sequential probabilistic choice tasks, 38 

there is a female advantage in the number of total rewards earned (2, 8, 9). These findings 39 

suggest that males and females may not actually differ dramatically in their ability to learn from 40 

rewards. If so, then an alternative explanation is needed for the differences in sequential decision 41 

making that lead to different patterns of reward acquisition in different tasks (10–12). 42 

 43 

Differences in reward outcomes need not solely arise from differences in ability to learn. Instead, 44 

they can also arise from differences in the choice of what to learn about  (10, 12–15): the 45 

strategy used for learning. In this view, sex-linked mechanisms influence learning strategies, and, 46 

because different strategies pay off differently in different environments, females have an 47 

advantage in some environments, while males have an advantage in others. However, this can 48 

only be uncovered in tasks that use choices that vary in multiple dimensions (12, 14). To 49 

illustrate, one of the challenges of moving to a new city is finding a favorite restaurant. In a new 50 

dining scene, it is not always clear what dimensions of a restaurant--meaning features like 51 

location, price, or type of cuisine--best predict high quality meals. One strategy for learning 52 

about a new dining scene could be to try all restaurants at random, sampling the entire 53 

environment to simultaneously learn about all the dimensions in which restaurants vary, until a 54 
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winner is found. This strategy might find the best option, but would be incredibly time 55 

consuming and may be sensitive to noise in meal quality because each restaurant is sampled less 56 

frequently. Another strategy might be to try to learn about the feature dimensions by constraining 57 

the search in one dimension (like neighborhood) while learning about how restaurants vary in the 58 

other dimensions. To a naive observer, this approach may appear to be unnecessarily risk-averse 59 

or limited, but holding some dimensions constant can facilitate learning about other dimensions, 60 

particularly when feedback is noisy. However, it is not clear what factors influence how 61 

individuals select one of these different strategies. 62 

 63 

To examine the possibility that sex differences in decision making may arise from different 64 

learning strategies, we examined male and female mice as they performed a two-dimensional 65 

decision-making task: a two-armed visual bandit (11, 16–22). We considered the possibility that 66 

animals were adopting divergent strategies to solve the task, and that these strategies could be 67 

tuned by sex differences. We found that while males and females eventually reached the same 68 

performance level, female mice learned more rapidly than males and acquired more rewards over 69 

the course of learning. The difference in the rate of learning was not because females learned 70 

more from outcome of each trial, but because of a sex difference in the strategies that governed 71 

the next choice. Female mice adopted a consistent and systematic approach of preferring to 72 

choose options in one spatial location, which constrained the decision-space and accelerated their 73 

learning about image values. Conversely, choices made by males did not follow a single, 74 

straightforward strategic approach. Males appeared to consider information from both image and 75 

spatial dimensions simultaneously, and were highly sensitive to the stochastic experience of 76 

reward. As a result, individual males substantially changed their own choice strategies over 77 
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learning, differing from themselves much more so than did individual females. During early 78 

learning, gene expression for the neuronal activation marker c-fos in the nucleus accumbens and 79 

prefrontal cortex significantly correlated with the extent to which female animals (but not male) 80 

used a systematic strategy. These results suggest that sequential decision making for reward can 81 

be achieved through widely divergent strategies, within and between subjects, and that strategies 82 

employed during learning are a significant source of sex differences in decision making. 83 

 84 

Results 85 

 86 

Age-matched male and female wildtype mice (n=32, 16 per sex, strain B6129SF1/J) were trained 87 

to perform a visually-cued two-armed bandit task in touchscreen operant chambers (Figure 1a). 88 

This task design was similar to those employed in humans and nonhuman primates (11, 16–24), 89 

in contrast to the spatial bandit designs frequently employed with rodents (25–28). Animals were 90 

presented with a repeating set of two different image cues which were associated with different 91 

probabilistic reward outcomes (Figure 1b).The reward schedule (80%/20%) was held constant 92 

throughout the session. In contrast with spatial bandit designs, here reward contingencies were 93 

yoked to image identity, which was randomized with respect to location in the chamber on each 94 

trial. This means that the sides (left/right) where image cues appeared were not informative of 95 

the reward contingencies. We repeated the task with six different sets of image pairs. Two out of 96 

the six tested image pairs were excluded from the study due to extremely high initial preference 97 

(>70%)  for one image over another. We included four images pairs with equal initial preference 98 

for each image and quantified behavioral data in bins of 150 trials for each animal.  99 

 100 
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Females showed accelerated reinforcement learning, but males and females reached 101 

equivalent final performance 102 

To examine learning performance, we calculated in bins of 150 trials the average percentage of 103 

choosing the high-value image (23 bins in total). Regardless of sex, mice were capable of 104 

eventually learning which image was associated with the higher reward probability (Figure 1c, 105 

GLM, main effect of sex, p = 0.51, β1 = - 0.05; main effect of number of trials, p < 0.0001, β2 = 106 

0.10, see equation 1 in Methods). However, we repeatedly observed that females learned the 107 

image pair discrimination significantly faster than did males (GLM, interaction term, p < 0.05, 108 

β3 = -0.02). We compared these results to a deterministic version of the task in the same animals, 109 

in which one image was always rewarded (100%) and the other was never rewarded (0%). We 110 

did not find any significant sex difference in rate of learning across trials in the deterministic task 111 

(Figure 1d, GLM, interaction term, p = 0.38,  β1= -0.004, see equation 1 in Methods), 112 

suggesting the difference was revealed by the stochastic experience of reward.  113 

 114 

To determine the origins of this sex difference in early performance, we first considered that sex 115 

differences in early learning might reflect differences in the rate of value-updating and/or the 116 

level of random noise in choice--the typical parameters of reinforcement learning models. We fit 117 

a delta-rule reinforcement model (18, 25, 29, 30) to measure individual differences in the 118 

learning rate parameter and noise parameter, based on choices of images. However, the 119 

likelihood surface of the model given by parameters learning rate (a) and inverse temperature (b) 120 

was flat, which prevented parameter optimization. This suggested to us that the basic RL model 121 

based on images as the sole choice dimension could not characterize individual differences in 122 

learning in this task. 123 
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 124 

Since rodents are generally highly spatial, we hypothesized that mice might have a bias towards 125 

using spatial information earlier in the task, before switching to use image information, as 126 

demonstrated by the high rates of reward late in training. Consistent with our hypothesis, we 127 

observed a short period of high side bias in females early in learning (Figure 1e), which could 128 

include a preference for either the left or right side and seemed to precede the acquisition of the 129 

reward contingency. Following the decrease of side bias, female mice improved their percentage 130 

of choosing high-value image. (GLM, main effect of sex, p < 0.001, β1= -0.129; main effect of 131 

number of trials, p < 0.001, β2 = -0.017, see equation 1 in methods). Strength of side bias 132 

independent of left or right side was calculated using methods described in previous behavioral 133 

lateralization literature (31). 134 

  135 

Females systematically reduced the dimensions of the task by strongly preferring one side  136 

A side bias is only one of several local strategies that mice could have been using as they learned 137 

the reward contingencies in the task. For example, another local strategy is a spatial win-stay 138 

strategy, where the side of the last choice is repeated if and only if it was rewarded. 139 

Alternatively, an image win-stay strategy would repeat the last image, if and only if it was 140 

rewarded, or an image bias strategy would simply select the previous image, regardless of 141 

reward. To understand how different animals employed these different local strategies and 142 

processed through them over time, we constructed a generalized linear model (GLM) to predict 143 

each choice, based on a weighted combination of these local strategies. The model had a term to 144 

account for two classes of basic strategies: outcome-independent strategies and outcome-145 

dependent, win-stay, strategies (Figure 2a, see Equation 4 in methods). Outcome-independent 146 
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strategies (image repeat and spatial repeat) captured the tendency of repeating either the side or 147 

the image of the previous trial, regardless of the outcome. Conversely, outcome-dependent 148 

strategies followed a win-stay lose-shift policy for either a side or an image, which captured the 149 

tendency  to only repeat the side or the image of the previous trial when it was rewarded. Fitting 150 

the GLM allowed us to estimate how much each of these four strategies was employed within 151 

each animal on each bin of trials. We will call this set of weights--the precise pattern of local 152 

strategies employed over time--the “global strategy” employed by each individual animal. 153 

 154 

Across all animals, we found a global strategy where a specific procession through local 155 

strategies was used when learning image pairs (Figure 2b). First, animals showed an early 156 

tendency towards outcome-independent spatial repeat, giving way to a later interaction between 157 

reward outcome and image choice, with outcome-insensitive image repeat (the optimal strategy) 158 

increasing in the later stages of testing. To examine whether sex influenced the strength of this 159 

strategy procession, we compared the global strategy used by male and female animals. We 160 

observed a consistent and pronounced pattern of strategy procession only in females (Figure 2c). 161 

In contrast, in males, the weight of both image-based strategies simply increased slowly  over 162 

time (Figure 2d), with little change in spatial strategies. Thus, neither a procession of multiple 163 

strategies nor a prominent strategy in the early learning stage was observed in male mice. 164 

 165 

The sex difference in this strategy selection was intriguing, but it could have been driven by only 166 

a few females. Therefore, we next characterized individual variability in strategy via principal 167 

component analysis. Here, we estimated the major axes of interindividual variability in strategy, 168 

meaning in the unique combinations of the four strategy weight vectors over time and across all 169 
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animals, regardless of sex. Principal components (PC) 1 and 2 captured the majority of the 170 

interindividual variance: 59% of the variability between animals (Figure 2e). PC1 reflected a 171 

global preference for a side or an image and did not significantly differ between sexes (p > 0.9, 172 

AUC = 0.43). The mean principal component scores of PC1 for females and males were 0.03 and 173 

-0.03, respectively. The mean PC score difference between females and males (mean(F-M)) was 174 

0.07 (95% CI = [-1.70, 1.80], t(30) = 0.08). Critically, PC2 mirrored the same procession of 175 

strategies observed in female, but not male mice  (Figure 2c-d). This suggests that the extent to 176 

which individuals used this procession of strategies explained a large fraction (22%) of the 177 

interindividual variability in our animals. The mean PC score of PC2 for females was 0.98 and 178 

for males was -0.98. The mean PC score difference between females and males (mean(F-M)) was 179 

1.96 (95% CI = [0.87, 3.05], t(30) = 3.67). Moreover, knowing the PC2 score (the projection of 180 

an individual animal’s behavior onto PC2) allowed us to discriminate male and female animals 181 

with remarkable accuracy (receiver operating characteristic analysis, AUC = 0.86, significant 182 

discrimination: p < 0.001). No other PCs differed between sexes (p > 0.4, AUC < 0.6). Together, 183 

these results suggest that the choice of what strategy to follow explains substantial individual 184 

variability in multidimensional decision-making, and that differences in strategy can depend on 185 

sex. 186 

 187 

There are two possible explanations why females consistently implemented the strategy 188 

procession captured by PC2. One hypothesis is that this early side bias reflected an energy saving 189 

strategy that saved time and/or effort by just repeating the same side. Alternatively, this early 190 

side bias could be an cognitively effortful strategy to constrain decision-making to one 191 

dimension. These two views make different predictions of the relationship between the use of 192 
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strategy procession captured by PC2 and reaction times (RTs), which were defined as the time 193 

between the onset of two visual stimuli and the registration of a nose poke response on one of the 194 

two stimuli. If side bias was an effort saving strategy, then the animals who score highest on PC2 195 

should also make the fastest decisions. On the other hand, if side bias was a cognitively effortful 196 

strategy, the speed of decision-making should be slower in animals who use this strategy. To test 197 

these two hypotheses, correlation analyses were run to assess the relationship between the use of 198 

PC2 strategy and reaction time. PC2 scores were positively correlated with reaction time (Figure 199 

3a, Spearman’s correlation, rs = 0.452, p = 0.009; Pearson’s correlation, r = 0.347, p = 0.051), 200 

suggesting that the animals who used the early side bias strategy made slower decisions. This 201 

suggests that this strategy is effortful, rather than  energy saving. There were no significant 202 

correlative relationships between reaction time and other PCs.  203 

 204 

If the side bias in females was a cognitively effortful strategy, we would expect to see that 205 

female mice are slowest at making their choices when they are most engaging this strategy: 206 

during early learning. To test this hypothesis, we computed average RTs across 23 bins of 150 207 

trials for males and females. Consistent with our hypothesis, females responded slower during 208 

early learning (bin 1-15) (GLM, interaction term, β3 = 0.03, p = 0.0007) and significantly slower 209 

than males across all trials (GLM, main effect of sex, β1 = -0.62, p < 0.0001). The mean RT 210 

across all trials for males was 1.89 seconds with standard deviation of 0.13, and the group 211 

average for females was 2.04 seconds with standard deviation of 0.21. The reaction time 212 

decreased as the animals ran more trials in both males and females (Figure 3b, GLM, main 213 

effect of number of trials, β2 = -0.04, p<0.0001, see equation 1 in methods). Thus, female mice 214 

were slowest during the period in which they were using the side bias strategy the most, again 215 
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consistent with the idea that this is a cognitively effortful strategy, rather than an energy saving 216 

one. 217 

 218 

Males varied strategies over time in response to immediate past reward 219 

Although our analyses captured the procession of strategies employed across essentially all 220 

female mice that learned the task, they provided little insight into what the males were doing. 221 

One likely explanation is that males were more inconsistent than females. Males could be more 222 

inconsistent than females for any one of three reasons: hypothesis 1) males were more random 223 

(and thus each choice would be unpredictable within an animal), hypothesis 2) males were more 224 

idiosyncratic and less uniform as a group (and thus responses would differ across individuals, 225 

but still be predictable within an individual), or hypothesis 3) that males were more changeable 226 

(and thus a given male was predictable in the sense that he was not random, but he was still more 227 

likely to change his strategic approach from one epoch to the next).  228 

 229 

To test hypothesis 1 (randomness), we asked whether male choices were more or less predictable 230 

than female choices. We reasoned that if males were just choosing randomly, it would be 231 

impossible to predict their choices. Therefore, within each block of trials in each animal, we 232 

calculated conditional mutual information (32, 33), which quantifies the dependence of current 233 

choices (side, image) on the choice of previous trial, given the outcome of the previous trial. If 234 

the current choice an animal made was random, it would be independent of the choice and 235 

outcome of the previous trial, and we would expect to see low mutual information, shown as 236 

uniform “bands” on the probability heatmap (Figure 4a). Conversely, if the current choice was 237 

heavily influenced by the content of the previous trial, we would expect to see high mutual 238 
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information, shown in a more checkered or selective pattern on the probability heatmap. We 239 

calculated conditional mutual information for each trial bin across sexes. We found that mutual 240 

information decreased over time in both sexes, reflecting the gradual acquisition of the strategy 241 

of choosing high reward probability cue regardless of the outcome of the previous trial (Figure 242 

4a, GLM, main effect of number of trials, β2 = -0.001, p =0.0002, see equation 1&5 in 243 

Methods). However, surprisingly, the mutual information of male mice was higher than that of 244 

females (main effect of sex, β1 = 0.043, p < 0.0001), particularly early in learning (interaction 245 

term, β3 = - 0.002, p < 0.0001). Thus, males were, if anything, less random than females. 246 

 247 

One possibility is that the high mutual information in males was a result of increased sensitivity 248 

to the last  reward, meaning that the last reward had a bigger effect on the males’ idiosyncratic 249 

decisions about what to do next. To estimate sensitivity to reward, we examined how reward 250 

outcomes affected the reaction time (RT) on the next trial  in both males and females. If the 251 

decision of an animal was not affected by the outcome of the past trial, then we would expect to 252 

see no difference between reaction time for last rewarded and last unrewarded trial (RTreward – 253 

RTno reward = 0). Males responded significantly faster when they had just received a reward from 254 

the previous trial (Figure 4b and 4c, one-sample t-test, mean RT effect = -0.14, 95% CI = [-255 

0.23, -0.05], t(15) = -3.38, p = 0.004). Conversely, the reaction times of females were not 256 

affected by the outcome of the last trial (one-sample t-test, mean RT effect = -0.03, 95% CI = [-257 

0.13, 0.06], t(15) = -0.75, p = 0.47). These results again suggested that female decisions were not 258 

affected on a trial-by-trial basis by the outcome of each trial because they followed a global 259 

strategy while male choices that were heavily affected by recent rewards. 260 

 261 
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Although males were, if anything, less random in their decision-making than females, it 262 

remained possible that the apparent lack of local strategies occurred because male strategies were 263 

inconsistent--either because of idiosyncratic differences between males (hypothesis 2) or 264 

changeability within males (hypothesis 3). To do this, we developed a technique for comparing 265 

how similar one set of choices was to other set of choices. We expressed the choices in each bin 266 

as a probability vector, with each element of the vector reflecting the probability of that unique 267 

combination of behaviors {last choice, last outcome, this choice}. The average angle between 268 

any two of probability vectors across animals, trial bins, or image pairs is then a measure of the 269 

variability in choices between those two conditions. Males were not more idiosyncratic than 270 

females on a population level; that is, the choices of any male were not more variable from other 271 

males than any female’s choices were from other females (Figure 4d, GLM, main effect of sex, 272 

β1 = -1.47, p = 0.11, see equation 1 in Methods). However, the males were more variable within 273 

themselves, both across bins within one image pair (Figure 4e, GLM, main effect of sex, β1 = 274 

4.24, p < 0.0001, see equation 1 in Methods) and across multiple image pairs (Figure 4f, GLM, 275 

main effect of sex, β1 = 4.54, p = 0.047, see equation 1 in Methods). Overall, the variability in 276 

choices decreased across time, as the divergent strategies used by individual animals started to 277 

converge to the optimal strategy in this task, which is to choose the high-value image 278 

consistently (GLM, main effect of number of trials, within sex between suject: β2 = -0.78, p < 279 

0.0001; within subject between bins: β2 = -0.359, p < 0.0001). Together, these results suggest 280 

that individual males displayed divergent choice patterns and were changing between complex 281 

strategies over time and the repetition of the same task, while females largely adopted a shared, 282 

systematic approach to learning.  283 

 284 
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To visualize animals’ patterns of choices expressed in the probability vectors, we used 285 

multidimensional scaling (MDS) (34–36) to reduce the dimensionality of strategy space, 286 

allowing us to project the high-dimensional “strategy path” throughout learning onto a 2 287 

dimensional space. This allows us to easily visualize the similarity between patterns of choice 288 

across animals over time and across repetitions. Each color path represents a strategy path used 289 

in a different repetition of the task (4 repetitions in total). Figure 4g shows examples of strategy 290 

paths of males and females. The optimal strategy in this bandit task, which is to choose the high 291 

value image consistently regardless of the outcome, is represented by a star in the low 292 

dimensional space. Both males and females “strategy path” showed gradual approximation to the 293 

optimal strategy over time. Consistent with the quantification described above, the strategy path 294 

of males are visibly more variable and different across repetitions of the task, whereas the 295 

strategy path of females were more unified and consistent across repetitions. 296 

 297 

Sex mediated the ability of neuronal activity to explain strategy selection 298 

The ability to learn and perform bandit tasks is highly sensitive to alterations in corticolimbic 299 

structures. However, it remains unclear how alterations in these structures predict choice 300 

strategy, much less sex differences in choice strategy. To address this question, we examined 301 

neuronal activity in several corticolimbic brain regions by examining the expression of c-fos, an 302 

immediate early gene often used as a marker of neuronal activation. The animals from the 303 

previous figures were sacrificed after the second day of a new, final image-reward pairing (each 304 

animal having completed 400-500 total trials), corresponding to when the female side bias was 305 

greatest. We compared mRNA expression level for c-fos across five brain regions, including 306 

nucleus accumbens (NAc), dorsal medial striatum (DMS), amygdala (AMY), hippocampus 307 
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(HPC), and prefrontal cortex (PFC), using quantitative real-time PCR (Figure 5a). In each of the 308 

five brain regions, females had a higher c-fos expression level than did males (unpaired t-test, 309 

NAc: t(30) = 2.41, p = 0.02; DMS: t(30) = 2.31, p = 0.03; AMY: t(30) = 4.05, p < 0.001; HPC: 310 

t(30) = 2.74, p = 0.01; PFC: t(29) = 3.163, p = 0.003).  311 

 312 

To understand whether activation of any of these brain resions correlated with the side bias 313 

strategy, we constructed a GLM to predict PC2 from c-fos expression level in each brain region 314 

and sex. The results suggested that only two regions, the  NAc and PFC predicted strategy use, as 315 

indexed by PC2 score  (Figure 5b, GLM, NAc: β1 = 0.72, p = 0.02; DMS: β2 = 0.48, p = 0.14; 316 

AMY: β3 = 0.52, p = 0.10; HPC: β4 = 0.55, p = 0.08; PFC: β5 = 0.75, p = 0.02; sex was included 317 

as a variable in the model and was also significant: β6 = 0.99, p = 0.0009, see equation 2 in 318 

Methods). Because each region was also correlated with sex to differing extents (and sex 319 

independently predicted PC2), we next asked whether NAc and PFC were the best predictors of 320 

PC2 because these regions were the most strongly correlated with sex (Figure 5c). However,  the 321 

predictive effect of NAc and PFC c-fos expression was not because NAc and PFC were the most 322 

highly with sex. Instead, sex was most strongly correlated with AMY, which was not a 323 

significant predictor of PC2. To confirm that these correlations between regional activation and 324 

early side bias strategy was meaningful, we fit the same GLM to predict PC1, and none of the 325 

predictor variables were significant. We confirmed these results with a Pearson product-moment 326 

correlation coefficient, which again suggested a significant positive correlation between c-fos 327 

expression in NAc/PFC and PC2 scores (Figure 5d, NAc: r = 0.40, n = 32, p < 0.03; PFC: r = 328 

0.41, n = 32, p < 0.02; averages across a median split of PC2 within each sex are illustrated in 329 

Figure 5e; main effect sex: NAc: F (1,28) = 12.87, p = 0.001; PFC: F (1,28) = 13.47, p = 0.001). 330 
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 331 

Next, we asked whether an animals’ sex altered the relationship between NAc and PFC c-fos 332 

activity PC2 scores. To do this, we used a structural equation modeling (SEM) approach (37, 38) 333 

to analyze the structural relationship between sex, gene expression, and PC2 and latent 334 

constructs (Figure 5f). First we used a direct model and regressed c-fos expression of either NAc 335 

or PFC on strategy selection, both NAc and PFC were significant direct predictors of PC2 scores 336 

(NAc: β = 0.72, p = 0.022; PFC: β = 0.75, p = 0.019, see equation 6 in Methods). Then we fit a 337 

mediation model that allows us to understand how sex influences neural activation in NAc and 338 

PFC, which in turn influences strategy selection. Regressing the mediator variable sex on c-fos 339 

expression in NAc/PFC confirmed that neural activation is a significant predicor of the mediator 340 

sex (NAc: α = 0.20, p = 0.024; PFC: α = 0.26, p < 0.004, see equation 7 in Methods). When we 341 

regressed strategy selection on both the mediator variable (sex) and independent variable (neural 342 

activation in NAc/PFC), the result showed that the mediator sex was a significant predictor of 343 

strategy selection (NAc: β1 = 1.66, p = 0.008; PFC: β1 = 1.64, p = 0.012), and the strength of the 344 

direct model is now greatly reduced and became non-significant when accounted for the 345 

mediating effect of sex (NAc: β’ = 0.38, p = 0.20; PFC: β’ = 0.33, p = 0.31). The Sobel (1982) 346 

first-order test was used to assess the presence of mediation (38). The indirect effect was 347 

calculated as the product of coefficients and was significant for both NAc and PFC (NAc: αβ’ = 348 

0.34, z = 1.836, p < 0.039; PFC: αβ’ = 0.42, z = 2.035, p < 0.026). Together, these results 349 

suggest that the relationship between PFC and NAc c-fos and PC2 differed, depending on the 350 

animals’ sex. This suggests that sex-linked mechanisms gate the relationship between these 351 

circuits and strategic decision-making and highlight these regions as promising targets for future 352 
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studies looking at the effects of sex on the neural circuits responsible for implementing strategic 353 

learning. 354 

 355 

Discussion 356 

 357 

By training male and female mice on a stochastic two-dimensional decision-making task, we 358 

were able to evoke a range of problem solving strategies across individuals. In this task, each cue 359 

has two dimensions - the identity of the image and the location of the image. Animals had to 360 

explore the reward value associated with both cue dimensions to determine which were most 361 

predictive of reward. Although both male and female mice eventually learned the right strategy, 362 

choosing the high-value image, female mice learned faster. The richness of this task allowed us 363 

to uncover sex differences in how the animals achieved the associations across time. We 364 

discovered that female mice adopted a consistent and systematic approach where they processed 365 

through different strategies over time. Early in learning, they constrained their search space by 366 

only sampling the outcomes of images on one side (left or right). This approach, which occurred 367 

when animals were most uncertain about the best choice, reduced the number of dimensions they 368 

were learning about and permitted more rapid acquisition of the image-value association. In 369 

contrast, males employed a strategy of decisions that seemed to combine both image and spatial 370 

location, changed frequently,  and was strongly influenced by the immediate prior experience of 371 

reinforcement. While both sexes eventually reached equivalent levels of performance, our data 372 

reveal that the journeys individual animals take to get there can vary dramatically, implicating 373 

the potential for wide divergence in neural circuit mechanisms in normal decision making.  374 

 375 
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One fundamental unanswered question is why females as a group employed a highly similar and 376 

consistent strategy. Zador (2019) recently proposed that much of animal behavior is not dictated 377 

by supervised or unsupervised learning algorithms, but are largely innate, shaped by biological 378 

constraints (39). The biological constraints and organization imposed by the multiple 379 

mechanisms of sexual differentiation are known to drive a tuning of the circuits important for 380 

reward-guided decisions (40–44). Among these are well-known effects of testosterone in driving 381 

exploratory and impulsive behavior (43, 45, 46). Conversely, energy-conserving and habitual 382 

behaviors are more prevalent in female animals, including during foraging (1, 2, 47). Gonadal 383 

hormones, such as ovarian hormone estradiol (E2), are thought to exert modulatory control over 384 

cost/benefit decision-making that increased E2 resulted in reduction of high-effort choices (5, 48, 385 

49). In addition, dissociable impacts of sex chromosomes on reward-guided behaviors (50) that 386 

have been described as promoting habit in XX carriers and increased effort in XY carriers. Of 387 

course, most impacts of sexual differentiation are graded, rather than dichotomous across the 388 

sexes. Indeed, here we found that a small number of males showed some tendency to use the 389 

female strategy, implicating graded mechanisms of masculinization in sex-gated strategy 390 

selection. Previous evidence of sex-differences in decision-making has been  interpreted as 391 

evidence that females avoid unnecessary effort in the pursuit of food. However, our results 392 

suggest that this strategy may be effortful, not effortless. Further, in many circumstances, it may 393 

be a better strategy than the male pattern of indiscriminate exploration. Thus, it is possible that 394 

these effects are due to differences in the behavioral ecology of male and female animals, which 395 

creates different biological constraints on learning across sexes. 396 

 397 
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What kinds of environments might advantage the typical female strategy over the typical male 398 

strategy or vice versa? Our result suggests that the systematic approach employed by female 399 

mice may have greater success with high-dimensional learning tasks. By reducing or eliminating 400 

choices in one dimension, females decreased the number of dimensions that varied at a time, and 401 

were able to learn other associations more quickly. However, in sparser environment, a strategy 402 

of exhausting all options in one dimension could become less effective. Having a range of 403 

divergent strategies and changing choice patterns in response to the reward outcome, as seen in 404 

male mice, may lead to a greater chance of success in varying and volatile environments (17, 51, 405 

52) at the cost of greater risk to an individual male.  Indeed, it is possible that these differences in 406 

the match between sex-specific strategies and the environment may be a major contributing 407 

factor in the inconsistent gender and sex differences across tasks with different levels of 408 

volatility (1, 2). An intriguing possibility is that the unified, consistent, and systematic strategy 409 

we observed in female mice, as well as the volatile and diverse strategy we observed in male 410 

mice in the same task, may emerge from evolved sex-biased strategies for foraging in the wild 411 

that were critical to survival for the species as a whole, by dividing risk and reward across the 412 

population.  413 

 414 

Sequential decision-making and learning is often studied with spatial bandit tasks, in which 415 

reward probabilities are linked to left and right levers or sides that are visually identical (17, 18, 416 

25, 53–55), particularly in rodent models. In these spatial bandit tasks, side bias in choice has 417 

sometimes been reported in rodent operant work as a behavioral artifact and animals displaying 418 

such bias were often excluded from experiments (56–58). However, in the current task, both the 419 

side and the identity of the image cues could have been informative of the reward probabilities. 420 
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In principle, animals could simultaneously sample both dimensions to learn side values and 421 

image values at the same time. However, in practice, it appears that the early side bias in female 422 

mice “jump-started” their learning by controlling for space while exploring choice-outcome 423 

values of the images, which in this task happened to be the more informative dimension of 424 

reward. Intriguingly, this suggests that females were covertly learning about the correct cue 425 

dimension while behaviorally selecting the wrong item, and were able to convert this to 426 

successful learning due to the stability of the task structure. This view suggests that , we should 427 

be able to design tasks that prevent the successful use of this strategy, and which might therefore 428 

shift the presentation of the sex difference in decision-making. 429 

 430 

Our data implicate the prefrontal cortex (PFC) and nucleus accumbens (NAc), part of the ventral 431 

striatum, in the differences in strategy between males and females. These regions have been 432 

widely implicated in reward-guided decision making, but so have the other regions we tested for 433 

which we didn’t find a significant relationship to behavior (11, 12, 15). One possibility is that the 434 

PFC and accumbens are particularly engaged in strategic decision-making. This resonates with 435 

previous studies that have implicated the PFC in implementing strategies and rule-guided 436 

behaviors (51, 55, 59–63) and the NAc in selecting and implementing learning strategies (12, 437 

14). Implementing different strategies produces changes in how different choice dimensions are 438 

represented in the PFC and  NAc (64), and lesions in the NAc can drive animals towards a low-439 

dimensional action-based strategy or prevent animals from switching between strategies (11, 14). 440 

The PFC is also sensitive to gonadal hormones during risky decision making (65), and 441 

dopaminergic function in the accumbens regulates risky decision making in a sex-specific 442 

manner (66), perhaps due to sex differences in dopamine neurons (44). Here, the relationship 443 
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between both PFC and NAc and strategy use was mediated by sex, suggesting that whatever the 444 

relationship between these regions and strategic decision-making, it is likely to be sex-specific.  445 
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Methods 446 

 447 

Animals. Thirty-two BL6129SF1/J mice (16 males and 16 females) were obtained from Jackson 448 

Laboratories (stock #101043). Mice arrived at the lab at 7 weeks of age, and were housed in 449 

groups of four with ad libitum access to water while being mildly food restricted (85-95% of free 450 

feeding weight) for the experiment. Animals engaging in operant testing were housed in a 0900–451 

2100 hours reversed light cycle to permit testing during the dark period, between 09:00 am and 452 

5:00 pm. Before operant chamber training, animals were food restricted to 85%-90% of free 453 

feeding body weight and had been pre-exposed to the reinforcer (Ensure). Pre-exposure to the 454 

reinforcer occurred by providing an additional water bottle containing Ensure for 24 hours in the 455 

home cage and verifying consumption by all cagemates. Operant testing occurred five days per 456 

week (Monday-Friday), and the animals were fed after training with ad lib food access provided 457 

on Fridays. All animals were cared for according to the guidelines of the National Institution of 458 

Health and the University of Minnesota. 459 

 460 

Apparatus. Sixteen identical triangular touchscreen operant chambers (Lafayette Instrument Co., 461 

Lafayette, IN) were used for training and testing. Two walls black were acrylic plastic. The third 462 

wall housed the touchscreen and was positioned directly opposite the magazine. The magazine 463 

provided liquid reinforcer (Ensure) delivered by a peristaltic pump, typically 7ul (280 ms pump 464 

duration). ABET-II software (Lafayette Instrument Co., Lafayette, IN) was used to program 465 

operant schedules and to analyze all data from training and testing.  466 

Operant Training 467 
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Pretraining. animals were exposed daily to a 30-min session of initial touch training, during 468 

which a blank white square (cue) was presented on one side of the touchscreen, counterbalancing 469 

left and right between trials. This schedule provided free reinforcement every 30 seconds, during 470 

which the cue was on. If animals touched the cue during this period,  a reward three times the 471 

size of the regular reward was dispensed (840 ms). This led to rapid acquisition. Following this, 472 

animals were exposed daily to a 30-min session of must touch training. This schedule followed 473 

the same procedure as the initial touch training, but free reinforcers were terminated and animals 474 

were required to nose poke the image in order to obtain a regular reward (7-uL, 280 ms).  475 

 476 

Deterministic pairwise discrimination training. Animals were exposed to 10 days of pairwise 477 

discrimination training, during which animals were presented with two highly discriminable 478 

image cues (“marbles” and “fan”). One image was always rewarded and the other one was not. 479 

Within each session, animals completed either 250 trials or spent a maximum of two hours in the 480 

operant chamber (typically these mice completed ~200 trials/day). 481 

 482 

Two-armed bandit task. Animals were trained to perform a two-arm visual bandit task in the 483 

touchscreen operant chamber. Each trial, animals were presented with a repeating set of two 484 

different images on the left and right side of screen, counterbalancing left and right across the 485 

session. Nose poke to one of the displayed images on the touchscreen was required to register a 486 

response. Nose poke on one image triggered a reward 80% of the time (high payoff image), 487 

whereas the other image was only reinforced 20% of the time (low payoff image). Following the 488 

reward collection, which was registered as entry and exit of the feeder hole, the magazine would 489 

illuminate again and the mouse must re-enter and exit the feeder hole to initiate the next image 490 
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trial. If the previous trial was unrewarded, a 3-second time-out was triggered, during which no 491 

action could be taken. Following the timeout, the magazine would illuminate and the mouse must 492 

enter and exit the feeder hole to initiate the next image trial. The ABET II system recorded trial 493 

to trial image chosen history, reward history, grid position of the images with time-stamp. Within 494 

each day, animals completed either 250 trials or spent a maximum of two hours in the operant 495 

chamber. Animals were given 14 days to learn about the probabilistic reward schedule of one 496 

image pair, before moving onto the next image pair. A total of six image pairs were trained, but 497 

two image pairs were eliminated from analyses due to very high initial preference (>70%) for 498 

one novel image over another, indicating that (to the mice) these images appeared unexpectedly 499 

similar to previously experienced images with learned reward values. 500 

 501 

RNA quantification. At the end of training, animals were sacrificed after the second day of 502 

learning a new image pair (around 400-500 trials of experience per mouse), when we expected to 503 

see the biggest difference in learning performance and strength of lateralization. Animal brains 504 

were extracted and targeted brain regions were dissected. We extracted RNA from targeted brain 505 

areas and assessed gene expression for the fos genes in the nucleus accumbens (NAc), dorsal 506 

medial striatum (DMS), amygdala (AMY), and hippocampus (HPC), using quantitative Real 507 

Time PCR system (BioRad, USA). Fos expression normalized to the housekeeper gene 508 

glyceraldehyde 3-phosphate dehydrogenase (gapdh) was calculated using the comparative delta 509 

Ct method.  510 

 511 

Data analysis 512 
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Generalized Linear Models (GLMs). In order to determine whether sex and number of trials 513 

(bins) predicts the accuracy of the task, strength of lateralization, reaction time, mutual 514 

information (MI), or angle between probability vectors, we fit a series of generalized linear 515 

models of the following form:  516 

 517 

    [1] 518 

 519 

Where Y is the dependent variable (accuracy, laterality, reaction time, MI, or angle). In this 520 

model, β1 described the main effect of sex and β2 described the main effect of number of trials 521 

(bins). β3 captures any interaction effect between sex and number of trials (bins).  522 

 523 

To determine whether c-fos expression in NAc, DMS, AMY, HPC, PFC, and sex predicted the 524 

weights of Principal Component (PC) 2, we fit the following generalized linear model. 525 

 526 

       [2] 527 

In this model, β1- β5 captures the predictive effect of gene expression in five regions on the use 528 

of PC2 strategy. β6 described the effect of sex on the weights of PC2.  529 

 530 

Degree of lateralization. As a measure of the strength of side bias, we used the absolute 531 

percentage of laterality (31), calculated for each mouse according to the following formula:  532 

            533 

       [3] 534 
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Generalized Logistic Regression Model. Mice could base their decisions on reward history in the 535 

spatial or image domains or on choice history in the spatial or image domains. To determine how 536 

these four aspects of previous experience affected choice and how these effects changed over 537 

time, we estimated the effect of the last trials’ reward outcome (O), image choice (I), and chosen 538 

side (S) using logistic regression. If image (image 1) was on the left side of the screen, we could 539 

predict the probability of choosing that image as a linear combination of the following four 540 

terms: 541 

     [4] 542 

Where each term (O, I, and S) is a logical, indicating whether or not that event occurred on the 543 

last trial. As a result, the term (I_{1, t-1} - I_{2, t-1}) is 1 if image 1 was chosen on the last trial, 544 

but -1 otherwise. The term β1 thus captures the tendency to either repeat the previous image 545 

(when positive) or choose the other image (when negative). The term β2 O_{t-1} accounts for 546 

any additional effect of the previous image on choice, when that previous choice was rewarded.. 547 

If image 1 was on the left side, (S_{L, t-1} denotes the probability of repeating the left side 548 

where image 1 appeared. However, because image 1 could be either on the left or the right side 549 

of the screen (which allowed us to dissociably estimate the probability of choosing it based on 550 

side bias or image bias), we expanded the (S_{L, t-1} - S_{R, t-1}) term to account for the 551 

current position of image 1 as follows: 552 

 553 

 554 
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Meaning that the current position of image 1 determined the sign of the side bias term. This 555 

model was fit individually to each bin of 150 trials, within each animal and image pair, via cross-556 

entropy minimization with a regularization term (L2/ridge regression). 557 

 558 

Principal component analysis. In order to determine how decision-making strategies differed 559 

across animals and bins, we looked for the major dimensions of interindividual variability in 560 

decision-making strategies. To do this, we took advantage of the fact that the coefficients of the 561 

generalized linear model provided a simplified description of how decision-making depended on 562 

image, side, and outcome for each subject in each bin. Because the generalized logistic 563 

regression model estimated 4 terms per image pair and there were 23 independent bins per image 564 

pair, this meant that each animals’ behavior for a given image pair could be described as a 4*23 565 

by 1 dimensional vector. We then used principal component analysis to identify the linear 566 

combinations of model parameters that explained the most variance across subjects and 567 

repetitions of image pairs (across 32 (animals) x 4 (repetitions) = 128 total strategy vectors). The 568 

first two principal components, which explained the majority of the variance (59%), are 569 

illustrated in Figure 2e. 570 

 571 

Conditional mutual information and model-free analyses. To account for idiosyncratic strategies, 572 

which could vary across animals or image pairs, we used a model-free approach to quantify the 573 

extent to which behavior was structured without making strong assumptions about what form 574 

this structure might take. We quantified the extent to which choice history was informative about 575 

current choices as the conditional mutual information between the current choice (C) and the last 576 

choice (C_t-1), conditioned on the reward outcome of the last trial (R): 577 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/852830doi: bioRxiv preprint first posted online Nov. 25, 2019; 

http://dx.doi.org/10.1101/852830


 

27 

 578 

     [5] 579 

Where the set of choice options (C) represented the unique combinations of each of the 2 images 580 

and 2 sides (4 combinations). To account for observed differences in overall probability of 581 

reward for male and female animals, the mutual information was calculated independently for 582 

trials following reward delivery and omission, and then summed across these two conditions. 583 

 584 

We used a similar approach to provide a model-free description of the animals' choice patterns. 585 

Briefly, instead of finding the set of beta weights that best described reliance on various history-586 

dependent strategies over time, we directly calculated the joint probability of each possibility 587 

combination of last choice (image and side), last outcome (reward and unrewarded), and current 588 

choice (image and side). This means that we represented the animals’ history-dependent choice 589 

pattern for each image pair as an 32-dimensional vector (4 (last choice) x 2 (last outcome) x 4 590 

(current choice) = 32) of joint probabilities. Via a geometric interpretation of a multinomial 591 

distribution, we considered the animal’s pattern of behavior within any bin of trials as a point on 592 

the 32-1 dimensional simplex formed by length-1 vectors. This geometric approach allowed us to 593 

map strategies over time or across bins as a diffusion process across this simplex, where the 594 

angle between two vectors (between animals/between bins/between repetitions) is proportional to 595 

step between them on a strategy simplex. The bigger the step between two vectors, the more 596 

variable the behavior pattern is. 597 

 598 
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Mediation Analysis. First we used a direct model and regressed c-fos expression of either NAc or 599 

PFC on weights of PC2. When assessing a mediation effect, three regression models are 600 

examined: 601 

 602 

Model 1 (direct): 603 

        [6] 604 

Model 2 (mediation): 605 

        [7] 606 

Model 3 (indirect) 607 

      [8] 608 

 609 

In these models, γ1, γ2, and γ3 represent the intercepts for each model, while ε1, ε2, and ε3 610 

represent the error term. β denotes the relationship between dependent variable (PC2 weights) 611 

and independent variable (NAc c-fos expression) in the first model, and β’denotes the same 612 

relationship in the third model. α represents the relationship between independent variable (NAc 613 

c-fos expression) and mediator (sex) in the second model. The mediation effect is calculated 614 

using the product of coefficients (αβ1). The Sobel test is used to determine whether the 615 

mediation effect is statistically significant (38). 616 

 617 

Reinforcement Learning Model.  618 

We considered a basic reinforcement learning model, following the Rescorla Wagner rule. In this 619 

model, subjects first learn the expected value of each image based on the history of its previous 620 
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outcome value Q and use these Q values to decide what to do next. The expected value of arm k 621 

on the t th trial, Qtk , is updated based on the reward outcome of each trial: 622 

 623 

In each trial, rt – Qtk  captures the reward prediction error (RPE), which is the diffe-rence 624 

between expected outcome and the actual outcome. The parameter a is the learning rate, which 625 

determines the rate of updating RPE. Action selection was performed based on a Softmax 626 

probability distribution: 627 

 628 

where inverse temperature b determines the level of random exploration.  629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

  638 
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Figures and Figure Captions 645 

 646 

 647 

Figure 1. Females showed accelerated acquisition of the high reward probability image in a 648 

stochastic two-armed visual bandit task. A) Schematic of the mouse touch-screen operant 649 

chamber used in our task. B) Schematic of two-armed Visual Bandit task. Images varied between 650 

the two locations across trials. The reward probabilities for two images are 80% and 20%, 651 

respectively. C) Average learning performance (percent correct) across four repetitions of the 652 

task with four pairs of images. While both males and females reached the same final 653 

performance, females displayed an accelerated learning curve. D) No sex difference in learning 654 

performance was observed in deterministic reward schedule (100%/0%). E) Females displayed 655 

stronger side bias for item selection on the touchscreen, regardless of the direction of 656 

lateralization, early on in learning. This behavior lateralization disappeared as female mice 657 

learned the task. Data shown as bins of 150 trials. * indicates p < 0.05. Bars ± SEM. N=16/sex, 658 

wildtype F1 strain B6129SF1/J.  659 
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Figure 2. Female mice use a procession of strategies, initially using a spatial bias followed 661 

by a switch to responding based on image domain. A) Schematic of four basic local strategies 662 

based on choice and reward history of image and spatial dimensions of the task. B) A 663 

generalized logistic regression model revealed a global strategy - a clear procession of four local 664 

strategies - that mice started repeating one side before switching to choosing the reinforced 665 

image. C) female mice displayed more pronounced global strategy procession from spatial-based 666 

strategy to image outcome-based strategy. D) male mice displayed increased image win-stay 667 

lose-shift over time but no prominent global strategy in the early learning stage was observed. E) 668 

A principal component analysis (PCA) was conducted on the estimates of global strategy 669 

strength over time across all animals regardless of sex. Principal component (PC) 1 and 2 670 

accounted for about 60% of the variance. PC 1 described a general preference for responding 671 

based on image value and did not differ between sexes. PC 2 captured the same global strategy 672 

procession reflected in the generalized logistic model - a strong contribution of the “side repeat” 673 

behavior early in training, followed by a rapid transition to “image outcome”, indicative of a 674 

sudden shift away from “where” and towards “what” in solving the task. Projecting each animal 675 

onto this PC 2 showed a clear separation between the sexes (blue male, pink female), AUC = 676 

0.86, p < 0.001. This suggests that the strategy procession from spatial repeat to image outcome 677 

is a female-specific strategy. Note that a few males are positive for Principal Component 2, and 678 

their individual behavior supports that these males also employed this strategy to a weaker 679 

extent. In contrast, the few females that are negative for this Principal Component did not show 680 

evidence of having learned the task. Data shown as bins of 150 trials. Bars ± SEM.  681 
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 682 

Figure 3. The side-to-image strategy procession captured by Principal Component (PC) 2 is 683 

a cognitively demanding strategy but not a time-saving strategy. A) Correlation analyses 684 

revealed a significant positive correlation between PC2 scores and reaction time. The decision-685 

making time was longer within animals primarily used PC2 strategy. B) Predominantly using 686 

PC2, females responded slower during early learning (GLM, interaction term, β3 = 0.03, p = 687 

0.0007). Note that, the slow reaction time during early learning in females matches with the time 688 

period (bin 1-10) during which females relied on side-bias “heuristics” for decision-making. 689 

Data shown as bins of 150 trials. * indicates p < 0.05. Bars ± SEM.  690 
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 691 

Figure 4. Male mice were more likely to differ from themselves over time, with choice 692 

patterns dependent on past outcomes. We expressed each animal’s history-dependent choice 693 

pattern as an 32-dimensional vector of joint probabilities and measured the angle between 694 

vectors, which is proportional to the step between them on a strategy simplex.  A) Illustration of 695 

choice patterns of low mutual information and high mutual information. If choice on trial t is 696 

independent of  choice on the previous trial (t-1), probability heatmap should show band-like 697 

pattern (choosing the same choice regardless of the previous choice). Conversely, high mutual 698 

information has more checkered choice patterns. Conditioned mutual information is higher in 699 

males, indicating that responses are more uniquely affected by the previous trial variables than 700 
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they are in females. B) One-sample t-test was conducted across bins to compare the difference in 701 

reaction time (RT) between rewarded and unrewarded trials to 0 (when there is no effect of past 702 

outcome on the reaction time). Male mice have significant RT effects on the last reward. There 703 

was no difference in reaction time between rewarded and unrewarded trials in female mice. The 704 

bins marked by asterisks have p < 0.05 for the one-sample t-test. C) average RT effect of last 705 

reward across all trials. Overall, male responded faster when the last trial was rewarded than 706 

unrewarded. D). Males and females were equally variable between animals within sex. An 707 

individual male is no more different from other males in behavior than a female is from other 708 

females. E) Choice patterns of a given male compared to himself over bins of 150 trials were 709 

more variable than in a given female compared to herself . F) Choice patterns of a given male to 710 

himself were more variable and divergent across repetitions of the same task than in females 711 

compared to themselves across repetitions. G) Multidimensional scaling (MDS) was used to 712 

visualize animal’s strategy path across trials and repetitions by reducing the dimensionality of 713 

the strategy space. Each of the four colors within one sex represents one repetition of the task. 714 

The star represents the point of optimal strategy for this task, which is to choose the high reward 715 

probability image. In both males and females, the strategy paths showed a gradual approach to 716 

the optimal strategy point, indicating that both sexes were able to learn the optimal strategy. The 717 

strategy paths of females are consistent and similar across repetitions, suggesting that female 718 

mice used a similar strategy every time to solve the problem. On the other hand, in male mice, 719 

the steps between each bins of 150 trials in the strategy space were larger, suggesting higher 720 

variability in choice patterns. Thus, male mice used divergent strategies throughout learning and 721 

used different approaches each time to learn the same task. Data shown as bins of 150 trials. * 722 

indicates p < 0.05. Bars ± SEM.  723 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/852830doi: bioRxiv preprint first posted online Nov. 25, 2019; 

http://dx.doi.org/10.1101/852830


 

37 

 724 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/852830doi: bioRxiv preprint first posted online Nov. 25, 2019; 

http://dx.doi.org/10.1101/852830


 

38 

Figure 5. Both sex and neuronal activity can account for strategy selection, but sex 725 

mediated the ability of neural activity to explain strategy selection.  726 

A) cFos gene expression (qRT-PCR) in five brain regions: nucleus accumbens (NAc), dorsal 727 

medial striatum (DMS), amygdala (AMY), hippocampus (HPC), and prefrontal cortex (PFC). 728 

Female mice showed elevated c-fos expression across all five brain regions. Asterisks marked 729 

significant difference between sexes (*: p < 0.05  **: p < 0.01  ***: p<0.001).  B) Heatmap of 730 

correlation matrix of c-fos expression level among five brain regions. C) c-fos expression in 731 

NAc and PFC, and sex, predict the use of PC2 strategy (GLM, NAc: β1 = 0.72, p = 0.02; PFC: 732 

β5 = 0.75, p = 0.02; sex: β6 = 0.99, p = 0.0009). Asterisks marked significant beta weights (p < 733 

0.05). D) cFos gene expression in NAc and PFC is significantly correlated with the weight of 734 

PC2. E) The use of PC2 strategies procession was analyzed with a 2 (sex: male versus female) x 735 

2 (c-fos expression quartile in NAc/PFC: bottom versus top) between-subjects ANOVA. The 736 

main effect of sex was significant for both NAc and PFC (NAc: F (1,28) = 12.87, p = 0.001; 737 

PFC: F (1,28) = 13.47, p = 0.001). F) Causal modeling of the relationship between gene 738 

expression level in NAc and PFC and the weight of PC2. The models on top are direct models, 739 

indicating that c-fos expression levels in both NAc and PFC are significant predictors of the 740 

weights of PC2. The bottom models are the mediation models, in which sex mediated the 741 

relationship between neural activity (c-fos expressions in NAc and PFC) and strategy selection 742 

(weights of PC2). The arrows are regressions. Paths are labeled with estimated coefficients and 743 

significant coefficients are marked by asterisks. The strength of the direct model is greatly 744 

reduced and became non-significant when accounted for the mediating effect of sex. This 745 

suggests that sex mediated neural measures in explaining strategy selection. Bars ± SEM. 746 

  747 
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